User's Manual

LG Programmable Logic Controller

G3F-AD4A G3F-AD4B G4F-AD2A

SAFETY PRECAUTIONS

Be sure to read carefully the safety precautions given in data sheet and user's manual before operating the module and follow them.

The precautions explained here only apply to the G3F-AD4A , G3F-AD4B and G4F-AD2A.
For safety precautions on the PLC system, see the GLOFA GM3/4 CPU User's Manuals and MASTERK200S/300S/1000S CPU User's Manuals.

A precaution is given with a hazard alert triangular symbol to call your attention, and precautions are represented as follows according to the degree of hazard.

If not provided with proper prevention, it can cause death or fatal injury or considerable loss of property.

If not properly observed, it can cause a hazard situation to result in severe or slight injury or a loss of property.

However, a precaution followed with
 CAUTION also result in serious conditions.

Both of two symbols indicate that an important content is mentioned, therefore, be sure to observe it.
Keep this manual handy for your quick reference in necessary.

Wiring Precautions

a caution

When grounding a FG terminal, be sure to provide class 3 grounding which is dedicated to the PLC.

- Before the PLC wiring, be sure to check the rated voltage and terminal arrangement for the module and observe them correctly.
If a different power, not of the rated voltage, is applied or wrong wiring is provided, it can cause a fire or disorder of the nodule.
- Drive the terminal screws firmly to the defined torque.

If loosely driven, it can cause short circuit, a fire or malfunction.

- Be careful that any foreign matter like wire scraps should not enter into the module.

It can cause a fire, disorder or malfunction.

Test Run and Maintenance Precautions

Waste Disposal Precautions

When disposing the module, do it as an industrial waste.

CONTENTS

Chapter 1. INTRODUCTION

1.1 Features 1-1
1.1.1 G3F-AD4A/ G3F-AD4B 1-1
1.1.2 G4F-AD2A 1-1
1.2 Glossary 1-2
1.2.1 A-A nal og Val ue 1-2
1.2.2 D-Digital Val ue 1-2
1.2.3 Anal og / Digital C onversion C haracteristics 1-3
Chapter 2. SPECIFICATIONS
2.1 General Specifications 2-1
2.2 Performance Specifications 2-2
2.3 Names of Parts and Functions 2-3
2.3.1 G3F-AD4A 2-3
2.3.2 G4F-AD2A 2.5
2.3.3 G3F-AD4B 2-6
2.4 I/O Conversion Characteristics 2-7
2.4.1 G3F-AD4A I/ OC haracteristics 2.8

1) Voltage Input C haracteristics 2.9
2) Current Input C haracteristics 2-10
3) S imul t aneous Vol tage and C urrent Input C haracteristics 2-11
2.4.2 G4F-AD2A I/ OC haracteristics 2-12
4) Volt age Input C haracteristics 2-12
5) Current Input Characteristics 2-14
6) Simul taneous Vol tage and C urrent Input C haracteristics $2 \cdot 15$
2.4.3 G3F-AD4B ||OC haracteristics 2.16
7) Volt age Input C haracteristics 2-17
8) Current Input C haracteristics 2-17
9) Simul t aneous Volt age and C urrent Input C haracteristics 2-18
10) The connection between Anal og input and Digital out put 2-18
2.4.4 The connection bet ween $\mathrm{Offset/G} \mathrm{G}$ an S etting and Digital O ut put Val ue 2-19
11) Resol ution 2-19
12) Rel ations between M aximum Resolution and Digital O ut put V al ue 2-19
13) $O f f$ set $/ G$ ain S etting $2-20$
(1) Offset/Gain Setting of the G3F-AD4A 2-20
(2) Offset/ Gain Setting of the G4F-AD2A $2-22$
2.5 A/D Conversion Characteristics 2-24
2.5.1 Filter Processing 2-24
2.5.2 S ampling Processing (Inst ant aneous Val ue) 2.25
2.5.3 Average Processing $2 \cdot 25$
Chapter 3. INSTALLATION AND WIRING
3.1 Installation 3-1
3.1.1 Installation Ambience 3-1
3.1.2 Handling Precautions 3-1
3.2 Wiring 3-2
3.2.1 Wiring Precautions 3-2
3.2.2 Wiring Examples 3-2
14) G3F-AD4A 3-2
15) $G 4 F \cdot A D 2 A$ 3-3
16) G3F-AD4B 3-4
Chapter 4. FUNCTION BLOCK
4.1 Insertion of the Function Block for the A/D Conversion Module on the GMWIN 4-1
4.2 Local Function Block $4-2$
4.2.1 Nodule Initializ ation(G3F-AD4A: AD4INI, G4F-AD2A: AD2INI, G3F-AD4B: AD4BI NI) 4.2
4.2.2 Modul e Reading-Array Type (G3F-AD4A: AD4ARD, G4F-AD2A: AD2ARD, G3F-AD4B: AD4 BARD) 4-3
4.2.3 Module Reading-Single Type (G3F-AD4A: AD4RD,G4F-AD2A: AD2RD, G3F-AD4B: AD4BRD) 4-3
4.3 Remote Function Block $4-4$
4.3.1 Nodule Initialization (GFF-AD4A: AD4RINI, G4F-AD2A: ADR2I NI, G3F-AD4B: ADR4BINI) 4-4
4.3.2 Module Reading (G3F-AD4A: ADR4RD, G4F-AD2A: ADR2RD, G3F-AD4B: ADR4BRD) 4.5
4.4 Errors on Function Block 4.6
Chapter 5. GM PROGRAMMING
5.1 Programming for Distinction of A/D Conversion Value 5-1
5.2 Programming for Display of AID Conversion Value and Error Code on BCD Display 5-7
5.3 Programming for Loading the A/D Conversion Module on Remote I/O Station 5-10
Chapter 6. BUFFER MEMORY CONFIGURATION AND FUNCTION
6.1 Buffer Memory Configuration 6-1
6.1.1 G3F-AD4A 6-1
6.1.2 G 3F-AD4B 6-2
6.1.3 G4F-AD2A $6-4$
6.2 Buffer Memory Functions 6-5
6.2.1 Avail abl e C hannel S pecification Area 6-5
6.2.2 Input Used Type Specification Area 6-5
6.2.3 Dat a O ut put Type S pecification Area 6.6
6.2.4 Filter Processing Enabl e/ Disable S pecification Area 6.6
6.2.5 Filter Const ant Setting A rea 6.7
6.2.6 Aver age Processing Enabl e/D isable Specification Area 6.8
6.2.7 Number /Time Average Processing Area 6.9
6.2.8 Aver age N umber / Time C onst ant S etting Area $6 \cdot 10$
6.2.9 SET DataS pecification Area $6 \cdot 10$
6.2.10 Digital Value 0 utput Area 6-11
6.2.11 ChannelOperation Data Storage Area 6-11
6.2.12 Error Code Di splay Area 6-11
Chapter 7. SPECIAL MODULE COMMAND (Buffer Memory READ / WRITE
7.1 Local Command 7-1
7.1.1 Internal Memory Read -GET, GETP 7.1
7.1.2 Internal memory Write-PUT, PUTP 7.2
7.2 Remote Command 7-3
7.2.1 BufferMemory Read -RGET 7.3
7.2.2 BufferMemory Write-RPUT 7.4
Chapter 8. MK PROGRAMMING
8.1 Basic Programming 8-1
8.1.1 G3F-AD4A 8-1
8.1.2 G4F-AD2A 8-2
8.2 Application Programming 8-3
8.2.1 Programming for Distinction of ADC onversion Val ue 8-3
8.2.2 Programing for Display of ALDConversion Val ue and Error Code on BCD Display 8 -5
8.2.3 Programming for Loading the A/ DC onversion Module on Remote I/OStation 8.7
Chapter 9. TROUBLESHOOTING
9.1 Error Code 9-1
9.1.1 Error C ode Indicated by RUN LED Flickering 9-1
9.2 Troubleshooting 9-2
9.2.1 RUN LEDFlickering 9-2
9.2.2 RUN LEDOff $9-2$
9.2.3 Digital Value Unreadabl e fromthe CPU Modul e 9-3
9.2.4 Sudden Digital Val ue Change 9.3
9.2.5 Analog and Digital Value Mismath 9-4
9.2.6 A/ D C onversion M odul e H ardwar e Fault 9-4
Chapter 10. DIMENSIONS
10.1 G3F-AD4A, G3F-AD4B Dimensions 10-1
10.2 G4F-AD2A Dimensions 10-2

Chapter 1. INTRODUCTION

The G4F-AD2A, G3F-AD4A and G3F-AD4B are analog/digital conversion modules for use with the GLOFA PLC GM 1/2/3/4 series CPU module and the MASTERK PLC K300S/1000S Series CPU module. The G4F-AD2A is used on GM4 series module and the K300S series module, and the G3F-AD4A and G3F-AD4B is used on the GM1/2/3 series module and the K1000S series module. (Hereafter the G4F-AD2A, G3F-AD4A and G3F-AD4B are called the A/D conversion module) The A/D conversion module is to convert an analog input signal (voltage or current) from external sensors into a 14-bit binary digital value.

1.1 Features

1.1.1 G3F-AD4A/ G3F-AD4B

1) 16 -Channel analog to digital conversion is possible with a single module.

The G3F-AD4A and G3FAD4B hav e 16-Channel A/D conversion capacity, with each channel selectable for voltage or current input.
2) High resolution of $1 / 16000$

High-resolution digital values can be obtained. Resolution setting applies to all channels.
4) The number of the G3F-AD4A used on one base is unlimited.
1.1.2 G4F-AD2A

1) 4-Channel analog to digital conversion is possible with a single module. The G3F-AD2A has 4Channel A/D conversion capacity, with each channel selectable for voltage or current input.
2) High resolution of $1 / 16000$

High-resolution digital values can be obtained. Resolution setting applies to all channels.
3) The number of the G4F-AD2A used on one base is unlimited

12 Glossary

[Fig 1.1] Analog Value

[Fig 1.2] Transducer

1.2.1 A-Analog Value

Analog value is a sequentially changing value such as voltage, current, temperature, speed, pressure, flux, etc. Temperature, for example, is sequentially changing according to the time. Because this temperature is not input on the PLC through transducer, the same analog value of DC voltage (0 to $\pm 10 \mathrm{~V}$) or current (4 to 20 mA) in accordance with the temperature should be inputted on the PLC.
1.2.2 D-Digital Value

[Fig 1.3] Digital Value

[Fig 1.4] PLC Processing

Digital value is non-sequentially changing value written as the number like 0 , $1,2,3$. The signal of on or off is written as digital value of 0 or 1 . There are BCD value and binary value in the range of digital value.

Analog value isn't written directly onto the CPU. For analog input to the CPU operation, analog converted to digital value has to be inputted onto the CPU and for analog output, the digital value of the CPU should be converted to analog value.

1.2.3 Analog/ Digital Conversion Characteristics

1) Voltage input

[Fig 1.5] A/D Conversion Characteristics (Voltage Input)

Analog/digital conversion module allows external analog input to be converted to digital value and to be operated in the CPU. On voltage input, input of -10 V leads to digital value of 0 and 10 V to 16000 .
Input of 1.25 mV is equal to digital value of 1 . Therefore, input less than 1.25 mV shouldn't be converted but ignored.
2) Current input

[Fig 1.6] A/D Conversion Characteristics (Current input)

On current input, input of -20 mA leads to digital value of 8000 and 20 mA to 16000 . Input of $2.5 \mu \mathrm{~A}$ is equal to digital value of 1 . Therefore, input less than $2.5 \mu \mathrm{~A}$ shouldn't be converted but ignored.

Chapter 2. SPECIFICATIONS

2.1 General Specifications

Table 2.1 shows the general specifications of GLOFA GM series and MASTER-K series.

No	Item	Specifications						Standard
1	Operating ambient temperature	$0 \sim 55^{\circ} \mathrm{C}$						
2	Storage ambient temperature	$-25 \sim 70^{\circ} \mathrm{C}$						
3	Operating ambient humidity	$5 \sim 95 \% \mathrm{RH}, \quad$ non-condensing						
4	Storage ambient humidity	5~95\%RH, non-condensing						
5	Vibration	Occasional vibration						IEC 61131-2
		Frequency	Acceleration		mplitude		Sweep count	
		$10 \leq \mathrm{f} \angle 57 \mathrm{~Hz}$	-		. 075 mm		10 times in each direction for X, Y, Z	
		$57 \leq \mathrm{f} \leq 150 \mathrm{~Hz}$	$9.8 \mathrm{~m} / \mathrm{s}^{2}\{1 \mathrm{G}\}$		-			
		Continuos vibration						
		Frequency	Acceleration	Amplitude				
		$10 \leq \mathrm{f} \angle 57 \mathrm{~Hz}$	-	0.035 mm				
		$57 \leq f \leq 150 \mathrm{~Hz}$	$4.9 \mathrm{~m} \mathrm{~s}^{2}\{0.5 \mathrm{G}\}$	-				
6	Shocks	*Maximum shock acceleration: $147 \mathrm{~m} / \mathrm{s}^{2}$ \{15G\} *Duration time : 11 ms *Pulse wave: half sine wave pulse(3 times in each of X, Y and Z directions)						IEC 61131-2
7	Noise immunity	Square wave impulse noise		$\pm 1,500 \mathrm{~V}$				
		Electrostatic d	charge	Voltage : 4 kV (contact discharge)				$\begin{aligned} & \text { IEC 61131-2 } \\ & \text { IEC 1000-4-2 } \\ & \hline \end{aligned}$
		Radiated electrom	gnetic field	$27 \sim 500 \mathrm{MHz}, 10 \mathrm{~V} / \mathrm{m}$				$\begin{aligned} & \text { IEC 61131-2 } \\ & \text { IEC 1000-4-3 } \end{aligned}$
		Fast transient burst noise		Severity Level	All power modules	Digital I/Os (Ue \geq 24 V)	Digital I/Os ($\mathrm{Ue}<24 \mathrm{~V}$) Analog I/Os communication I/Os	$\begin{aligned} & \text { IEC 61131-2 } \\ & \text { IEC 1000-4-4 } \end{aligned}$
				Voltage	2 kV	1 kV	0.25 kV	
8	Operating atmosphere	Free from corrosive gases and excessive dust						
9	Altitude for use	Up to $2,000 \mathrm{~m}$						
10	Pollution degree	2 or lower						
11	Cooling method	Self-cooling						

[Table 2.1] General specifications

REMARK

1) IEC(International Electrotechnical Commission)
: The international civilian organization which produces standards for electrical and electronics industry.
2) Pollution degree
: It indicates a standard of operating ambient pollution level.
The pollution degree 2 means the condition in which normally, only non-conductive pollution occurs.
Occasionally, however, a temporary conductivity caused by condensation shall be expected.

Chapter 2. SPECIFICATIONS

2.2 Performance Specifications

Table 2-2 shows performance specifications of A/D conversion module.

Items		Specifications		
		G3F-AD4A	G4F-AD2A	G3F-AD4B
I/O points		16 points		
Analog input	Voltage	$-5 \sim 5 \mathrm{VDC}$ (input resistance $560 \mathrm{k} \Omega$) $-10 \sim 10$ VDC (input resistance 560kS)		$1 \sim 5 \mathrm{VDC}$ (input resistance $560 \mathrm{k} \Omega$)
	Current	DC - $20 \sim 20 \mathrm{~mA}$ (input resistance 250Ω)		$\begin{gathered} 4 \sim 20 \mathrm{~mA} \\ \text { (input resistance } 250 \Omega \text {) } \end{gathered}$
	Voltage/Current selection	*. Select with the Input conversion switch on the side of the module (on: current, off: voltage) *. When current input is used, set the Input range switch to V1 / I.	*. Select in accordance with the Input terminals. *. Connect the V terminal with the I terminal on the use of current input.	*. Select with the Input conversion switch on the side of the module (on: current, off: voltage) *. Select with program initial F/B (input variable:IN_SEL, 0:current, 1:voltage)
Digital output		*. 16-bit (data: 14bit)signed binary *. May be set per channel by setting output data ("0": -192 to 16191, "1": -8192 to 8191)		$\begin{aligned} & * \text { *. 16-bit (data: 14bit)signed binary } \\ & (\text { ("0": } 0 \text { to } 16000, \text { "1": -8000 } \\ & \text { to 8000) } \end{aligned}$
Maximum resolution	$1 \sim 5 \mathrm{VDC}$	-		0.25 mV (1/16000)
	$-5 \sim 5 \mathrm{VDC}$	$0.625 \mathrm{mV}(1 / 16000)$		-
	$-10 \sim 10$ VDC	1.25 mV (1/16000)		-
	DC 4~20 mA			$1.0 \mu \mathrm{~A}(1 / 16000)$
	DC -20 ~20 mA	$0.0025 \mathrm{~mA}(1 / 16000)$		
Overall Accuracy(\%)		$\begin{gathered} \pm 0.5 \% \text { or lower } \\ \text { (accuracy to full scale) } \\ \left(\pm 0.3 \% \text { at ambient temperature } 25^{\circ} \mathrm{C}\right. \text {) } \end{gathered}$	$\pm 0.2 \%$ or lower (accuracy to full scale)	$\begin{gathered} \pm 0.5 \% \text { or lower } \\ \text { (accuracy to full scale) } \\ \left(\pm 0.3 \% \text { at ambient temperature } 25^{\circ} \mathrm{C}\right. \end{gathered}$
Maximum conversion speed (ms/channel)		3.0	5.0	3.0
Maximum absolute input		Voltage(V): $\pm 12, \quad$ Current (mA) $: \pm 25$		
Number of analog input point		16 channels/module	4 channels/module	16 channels/module
Isolation		Between input terminals and PLC: Photo coupler isolation (Between channels : Non-isolated)		
Terminals connected		38-point terminal block	20-point terminal block	38-point terminal block
Internal current consumntion(A)		0.67 A	0.4 A	0.54 A
Weight (g)		630	360	560

[Table 2.2] Performance Specifications

CAUTION

The offset / gain value of G3F-AD4B A/D conversion module at factory has been fixed. Therfore it is not Changed.

2.3 Names of Parts and Functions

The names of parts and functions of the A/D conversion module are shown as below.

2.3.1 G3F-AD4A

The names of parts and functions of the A / D conversion module are shown

No	Descriptions
(1)	RUN LED Indicates the operating status of the G3F-AD4A (1) On : Normal operation (2) Flicker : An error has occurred. (For more information, see the General Section 4.1) (3) Off : DC 5 V power-off or G3F-AD4A module fault.
(2)	Offset Trimmer Used to make micro adjustment of an offset value.
(3)	Gain Trimmer Used to make micro adjustment of a gain value.
(4)	Input range switch - On factory set, the voltage range has to be set to from -10 to 10 VDC. (1) Set to voltage V1 : Voltage range $-5 \sim 5$ VDC (2) Set to current I : Current range -20~20 mA : Unusable
(5)	Input select switch (1) Used to select the analog input(voltage or current input) of each channel -Set to OFF to use voltage input. -Set to ON to uses current input. (2) On factory set, it has to be set to voltage input condition. (Every Dip Switch is off.)

2.3.2 G4F-AD2A

This section shows the names of parts and functions of G4F-AD2A module.

2.3.3 G3F-AD4B

2.4 I/O Conversion Characteristics

Input / Output (hereafter I/O) conversion characteristics are expressed by the angle of the line connecting the offset value and gain value used to convert the analog signals, input to the PLC into digital values.
The I/O conversion characteristics of the A/D conversion module are shown as below.

[Fig 2.1] I/O Conversion Characteristics

2.4.1 G3F-AD4A I/O Characteristics

The G3F-AD4A allows voltage or current input to be selected per channel by the input select switch. Offset / gain setting is performed for 16 channels in block.

1) Voltage Input Characteristics

For voltage input, the input select switch of each channel is set to "off".

Position of Input select switch		
- Off : Voltage		
		(On the left side of the Module)
CH0 234567	89101112131415	¢ Channel number

a) Range : $-10 \sim 10$ VDC
-The analog input range switch has to be set to downward (V2).

-The digital output value according to voltage input characteristics will be shown as below.

Digital output range	Analog input voltage							
	$\mathbf{- 1 0 . 2 4 V}$	$\mathbf{- 1 0 ~ V}$	$\mathbf{0}$ V	$\mathbf{1 V}$	$\mathbf{5 V}$	$\mathbf{1 0 V}$	$\mathbf{1 0 . 2 4 V}$	
$-192 \sim 16191$	-192	0	8000	8800	12000	16000	16191	
$-8192 \sim 8191$	-8192	-8000	0	800	4000	8000	8191	

b) Range: $-5 \sim 5 \mathrm{VDC}$
-The analog input range switch has to be set upward (V1/I)

-The digital output value according to voltage input characteristics will be shown as below.

Digital output range	Analog input voltage						
	$\mathbf{- 5 . 1 2 ~ V}$	$\mathbf{- 5} ~ V$	$\mathbf{0}$ V	$\mathbf{1}$ V	$\mathbf{3}$ V	$\mathbf{5}$ V	$\mathbf{5 . 1 2} \mathbf{V}$
$-192 \sim 16191$	-192	0	8000	9600	12800	16000	16191
$-8192 \sim 8191$	-8192	-8000	0	1600	4800	8000	8191

2) Current Input Characteristics

- For current input, the input select switch of each channel is set to "on".

Analog input range switch has to be set upward (V1/I).

- The digital output value according to current input characteristics will be shown as below.

Digital output range	Analog input current							
	$\mathbf{- 2 0 . 4 8 ~ \mathrm { mA }}$	$\mathbf{- 2 0} \mathrm{mA}$	$\mathbf{0} \mathbf{~ m A}$	$\mathbf{4} \mathbf{~ m A}$	$\mathbf{1 2}$	$\mathbf{2 0}$	$\mathbf{2 0 . 4 8} \mathbf{~ m A}$	
$-192 \sim 16191$	-192	0	8000	9600	12800	16000	16191	
$-8192 \sim 8191$	-8192	-8000	0	1600	4800	8000	8191	

3) Simultaneous Voltage and Current Input Characteristics

For simultaneous voltage and current input, the input conversion switch of each channel is set to corresponding voltage and current range.
Analog input switch has to be set upward (V1/I).
Ex) Voltage input range: 0 to $7 \quad$ Current input range: 8 to 15

Input select switch position	Analog input range switch position
	$(\square)^{\text {V2 }}$ V1/ I $\binom{$ Voltage:-5~5 VDC }{ Current:DC-20~20 mA }

- For simultaneous voltage and current input, voltage input range has to be set only to the range [-5 ~ 5 VDC].

- Simultaneous voltage and current input characteristics lead to digital output value as below.

Digital output range	Analog input				
	-5.12 V	-5 V	0 V	5 V	5.12 V
	-20.48 mA	-20 mA	0 mA	20 mA	20.48 mA
$-192 \sim 16191$	-192	0	8000	16000	16191
$-8192 \sim 8191$	-8192	-8000	0	8000	8191

2.4.2 G4F-AD2A I/O Characteristics

1) Voltage Input Characteristics

- The G4F-AD2A is capable of selecting voltage/current and adjusting offset/gain for each channel.
- For voltage input, the input conversion switch may be set to the range such as from-10 to 10 VDC, or from -5 to 5 VDC.
a) $-10 \sim 10 \mathrm{VDC}$

- When offset/gain setting is changed, digital output value to voltage input characteristics are as below.

Section	Digital output range	Offset value	Gain value	Analog input voltage					
				-10 V	-5V	0 V	3 V	5 V	10 V
Ex1	$\begin{gathered} -192 \\ \underset{\sim}{\sim} 191 \end{gathered}$	-5 V	0 V	-192	0	8000	12800	16000	16191
Ex2		-10 V	0 V	0	4000	8000	10400	12000	16000
Ex3		0 V	5 V	-192	-192	0	4800	8000	16000
Ex1	$\begin{gathered} -8192 \\ \sim \\ 8191 \end{gathered}$	-5 V	0 V	-8192	-8000	0	4800	8000	8191
Ex2		-10 V	0 V	0	-4000	0	2400	4000	8000
Ex3		0 V	5 V	-8192	-8192	-8000	-3200	0	8000

b) $-5 \sim 5 \mathrm{VDC}$

- When offset/gain setting is changed, digital output value to voltage input characteristics are shown as below.

Section	Digital output range	Offset value	Gain value	Analog input voltage				
				-5V	0 V	1 V	3 V	5 V
Ex1	$\begin{gathered} \underset{\sim}{-192} \\ 16191 \end{gathered}$	-5 V	0 V	0	8000	9600	12800	16000
Ex2		0 V	2.5 V	-192	0	3200	9600	16000
(Ex3		1 V	3 V	-192	-192	0	8000	16000
Ex1	$\begin{gathered} -8192 \\ \underset{8191}{\sim} \end{gathered}$	-5 V	0 V	-8000	0	1600	4800	8000
Ex2		0 V	2.5 V	-8192	-8000	-4800	1600	8000
(Ex3		1 V	3 V	-8192	-8192	-8000	0	8000

2) Current Input Characteristics

- When offset/gain setting is changed, digital output value to current input characteristics are shown as below.

Section	Digital output range	Offset value	Gain value	Analog input current					
				.20 mA	0 mA	4 mA	10 mA	12 mA	20 mA
Ex1	$\begin{gathered} -192 \\ \underset{16191}{\sim} \end{gathered}$	$-20 \mathrm{~mA}$	0 mA	0	8000	9600	12000	12800	16000
Ex2		0 mA	10 mA	-192	0	3200	8000	9600	16000
Ex3		4 mA	12 mA	-192	-192	0	6000	8000	16000
Ex1	$\begin{gathered} -8192 \\ \sim \\ 8191 \end{gathered}$	-20 mA	0 mA	-8000	0	1600	4000	4800	8000
Ex2		0 mA	10 mA	-8192	-8000	-4800	0	1600	8000
Ex3		4 mA	12 mA	-8192	-8192	-8000	-2000	0	8000

3) Simultaneous Voltage and Current Input Characteristics

-When voltage and current are input simultaneously, the input range switch of the left side of the module has to be set to the range from -5 to 5 VDC. (Switch 1 turns Off, Switch 2 turns On)

Ex) Voltage input channel : 0, Current input channel : 1

-When voltage and current are input simultaneously, voltage input range has to be set only to the range from -5 to 5 VDC.

Analog Input
-When offset/gain setting is changed, digital output value to voltage/current input characteristics are shown as below.

Section	Digital output range	Offset value (Voltage I Current)	Gain value (Voltage I Current)	Analog input					
				-5V	0 V	1 V	2.5 V	3 V	5 V
				- 20 mA	0 mA	4 mA	10 mA	12 mA	20 mA
Ex1	$\begin{gathered} -192 \\ \sim \\ 16191 \end{gathered}$	$-5 \mathrm{~V} /-20 \mathrm{~mA}$	$0 \mathrm{~V} / 0 \mathrm{~mA}$	0	8000	9600	12000	12800	16000
Ex2		$0 \mathrm{~V} / 0 \mathrm{~mA}$	$2.5 \mathrm{~V} / 10 \mathrm{~mA}$	-192	0	3200	8000	9600	16000
Ex3		$1 \mathrm{~V} / 4 \mathrm{~mA}$	$3 \mathrm{~V} / 12 \mathrm{~mA}$	-192	-192	0	6000	8000	16000
Ex1	$\begin{gathered} -8192 \\ \underset{8191}{\sim} \end{gathered}$	$-5 \mathrm{~V} /-20 \mathrm{~mA}$	$0 \mathrm{~V} / 0 \mathrm{~mA}$	-8000	0	1600	4000	4800	8000
Ex2		$0 \mathrm{~V} / 0 \mathrm{~mA}$	$2.5 \mathrm{~V} / 10 \mathrm{~mA}$	-8192	-8000	-4800	0	1600	8000
Ex3		$1 \mathrm{~V} / 4 \mathrm{~mA}$	$3 \mathrm{~V} / 12 \mathrm{~mA}$	-8192	-8192	-8000	-2000	0	8000

Caution

1. When digital output is set to the range of -192 to 16191, despite a analog input more than the range of -192 to 16191, Digital output value is set to-192 or 16191.
When digital output is set to the range of -8192 to 8191 , despite a analog input more than the range of -8192 or 8191 , digital output value is set to -8192 or 8191 .
2. Do not apply $\pm 15 \mathrm{~V} / \pm 25 \mathrm{~mA}$ or more. This will damage the module due to a heat rise.
3. Set an offset/gain value on the G4F-AD2A to the range that gain value is more than offset value, or you won't get an accurate digital output.

2.4.3 G3F-AD4B I/O Characteristics

I/O conversion characteristics are expressed by the angle of used to convert the analog signals(voltage or current input), input to the PLC into digital values as shown below

- A/D coversion module is possible to select voltage/current by analog input range select switch by channel but cannot change offset/gain value because it is set

Caution

1. Despite a analog input more than the range of 16000 or 0 , digital output value is set to 16000 or 0 . 2. Do not apply $+15 \mathrm{~V} /+25 \mathrm{~mA}$ or more. This will damage the module due to a heat rise.

1) Voltage input characteristics(DC $1 \sim 5 \mathrm{~V})$

- For voltage input, input variables IN_SEL of initial funtion block is set to "1"
- The position of voltage/current select switch is set to "off" by channel

Digital value to voltage input characteristics is shown as below

Section	Analog input voltage(V)							
	Lower 1	1	2	3	4	5	Upper 5	
Digital output	0	0	4000	8000	12000	16000	16000	

2) Current input characteristics(DC $4 \sim 20 \mathrm{~mA})$

- For current input, input variables IN _SEL of initial funtion block is set to "0"
- The position of voltage/current select switch is set to "on" by channel

Digital value to current input characteristics is shown as below

Section	Analog input current(mA)							
	Lower 4	4	8	12	16	20	Upper 20	
Digital output	0	0	4000	8000	12000	16000	16000	

3) Simultaneous Voltage and Current Input Characteristics

- For the channel used to voltage input, input variable IN_SEL of initial funtion block is set to "1" by channel, and the position of voltage/current select switch is set to "off"
- For the channel used to current input, input variable IN_SEL of initial funtion block is set to "0" by channel, and the position of voltage/current select switch is set to "on"
Ex) The channel used to voltage input : channel $0 \sim 3,8 \sim 11$, The channel used to current input : channel 4~7,12~15

Digital output to voltage/current input characteristics is shown as below

Section		Analog input							
Input type	$1 \sim 5 \mathrm{~V}$	Lower 1	1	2	3	4	5	Upper 5	
	$4 \sim 20 \mathrm{~mA}$	Lower 4	4	8	12	16	20	Upper 20	
Digital output		0	0	4000	8000	12000	16000	16000	

4) The connection between Analog input and Digital output

The connection between Analog input and Digital output is shown as below

Analog input and Digital output

2.4.4 The connection between Offset/Gain Setting and Digital Output Value

1) Resolution

Resolution is determined as below formulas.
(1) Voltage input

$$
\begin{aligned}
& \text { Resolution }=\frac{\text { Gain value }- \text { Offset value }}{8000} 51000(\mathrm{mV}) \\
& \text { Ex) Gain value : } 0 \mathrm{~V} \quad \text { Offset value : - } 10 \mathrm{~V} \\
& \text { Resolution }=\frac{0-(-10)}{8000} 51000 \mathrm{mV}=1.25 \mathrm{mV} \\
& \text { (2) Current input } \\
& \text { Resolution }=\frac{\text { Gain value }- \text { Offset value }}{8000} 1000(\mu \mathrm{~A}) \\
& \text { Ex) Gain value : } 0 \mathrm{~mA} \\
& \text { Resolution }=\frac{0-(-20)}{8000} 51000 \mu \mathrm{~A}=2.5 \mu \mathrm{~A}
\end{aligned}
$$

2) The connection between Maximum Resolution and Digital Output Value On the occasion of calculating, as follows, by offset/gain setting, digital output value 1 at a time doesn't increase or decrease.
$\frac{\text { Gain value - Offset value }}{8000}<$ Resolution

3) Offset / Gain Setting

(1) Offset/gain setting of the G3F-AD4A
a) Offset/gain sets procedure.
: Offset/gain setting is performed for 16 channels in block.

b) I/O characteristics in accordance with Offset/Gain setting

Voltage input and digital output value

Current input and digital output value
(2) Offset/Gain Setting of the G4F-AD2A
a) Offset/gain Setting Procedure

Set offset / gain values for each channel.

REMARK

(1) Set offset/gain value within practical input range.
(2) Offset/gain value is stored in the G4F-AD2A and remains after power-off.
(3) Set offset/gain value to the range of from-10 to 10 volts DC or from -20 to 20 mA . However, if this range is exceeded, the resolution and accuracy will be impaired.
(4) At the change of grounding position in the *5 of 3.2.2, be sure to restart offset/gain value from the beginning
b) Input/output Characteristics According to Offset/Gain Setting

Voltage input and digital output value

Current input and Digital output value

2.5 A/D Conversion Characteristics

2.5.1 Filter Processing

Filter processing noise or the quick change of input value helps to use a stable digital value compared with analog value.

$$
\begin{array}{ll}
P V f n=(1-\alpha) \times P V n+\alpha P V f n-1 \\
& \\
\text { PVfn } & \text { : present filter output value } \\
\text { PVn } & \text { : present A/D conversion value } \\
\text { PVfn-1 } & \text { : previous filter output value } \\
\alpha & \text { : Filter constant(the range: } 0.01 \text { to } 0.99) \\
& \text { Filter constants used here are } 1 \text { to } 99 .
\end{array}
$$

Ex1) G3F-AD4A/G4F-AD2A
Offset value : -10 VDC, Gain Value : 0 VDC
(Voltage input range : -10~10 VDC, Digital output range : -192~16191)
When analog value is changed in the sequence like $-10 \mathrm{~V},-5 \mathrm{~V}, 0 \mathrm{~V}$, and 5 V , filter output is shown as below.

Value of a	Filter output value				Remarks	
0.01	0	3960	7960	11960	a \quad leaning to the previous value by 1%	
0.5	0	2000	5000	8500	a	leaning to the previous value by 50%
0.99	0	40	120	239	a	leaning to the previous value by 99%

Ex2) G3F-AD4B
Voltage input range : 1~5VDC, Digital output range : $0 \sim 16000$
When analog value is changed in the sequence like $1 \mathrm{~V}, 2 \mathrm{~V}, 3 \mathrm{~V}$, and 4 V , filter output is shown as below.

Value of \mathbf{a}	Filter output value				Remarks	
0.01	0	3960	7960	11960	a leaning to the previous value by 1%	
0.5	0	2000	5000	8500	a	leaning to the previous value by 50%
0.99	0	40	120	239	a	leaning to the previous value by 99%

That is, filter disable allows present A / D conversion value to be displayed and filter enable allows A / D conversion value to be displayed by filter constant according to the relative importance between present A/D conversion value and previous value.

2.5.2 Sampling Processing (Instantaneous Value)

This is general A/D conversion processing. In other words, analog input value is to be converted to digital value without average processing in direct. Sampling period for writing digital value to the memory is changed according to the number of used channels.
$($ Process time $)=($ Number of channels $) \times$ Conversion speed

Ex) When 3 channels are used.

- G3F - AD4A(G3F-AD4B) : 3(number of channel used) $\times 3$ (Conversion speed) $=9(\mathrm{~ms})$
- G4F - AD2A $\quad: 3$ (number of channel used) $\times 5$ (Conversion speed) $=15(\mathrm{~ms})$

Sampling processing means, when average processing isn't used, analog input value is to be converted to digital value in direct.

2.5.3 Average Processing

1) The Cause of Average Processing

Average processing of noise or abnormal analog input is used to stabilize system control.

2) Kinds of Average Processing

There are kinds of average processing, which are time average and number average.
(1) Time Average Processing
a) Setting Range

G3F-AD4A(G3F-AD4B) : 96 to 12,000 (ms)
G4F-AD2A : 40 to $20,000(\mathrm{~ms})$
b) On the time average processing, the number of average processing within the Set time is determined according to the number of used channels .

Ex) Used channels : 4, Set time : 120 ms
G3F-AD4A(G3F-AD4B) : $120 \div(4 \times 3)=10$ count
G4F-AD2A $\quad: 120 \div(4 \times 5)=6$ count
c) When Set time divided by(Number of used channel× Conversion speed) makes the residue occur, the processing number will be [\{ average processing number \div (the number of used channel \times conversion speed) $\}+1$] by raising the residue.
Ex) Used channels: 4, Set time : 150 ms
G3F-AD4A(G3F-AD4B) : $150 \div(4 \times 3)=12$ count + remain $6 \rightarrow 13$ count
G4F-AD2A $\quad: 150 \div(4 \times 5)=7$ count + remain $\quad 10 \longrightarrow 8$ count
(2) Number Average Processing
a) Setting range

G3F - AD4A(G3F-AD4B, G4F-AD2A) : 2 to 4000 (count)
b) Number average processing period for writing digital value to the buffer memory is changed according to the number of channels.

Processing time $=$ Setting times \times Number of used channels \times Conversion speed

Ex) Used channels: 4, Average processing time: 50 count.
G3F - AD4A(G3F-AD4B) : $50 \times 4 \times 3=600 \mathrm{~ms}$
G4F - AD2A $\quad: 50 \times 4 \times 5=1000 \mathrm{~ms}$

Chapter 3. INSTALLATION AND WIRING

3.1 Installation

3.1.1 Installation Ambience

This module has high reliability regardless of its installation ambience. But be sure to check the following for system in higher reliability and stability.

1) Ambience Requirements

Avoid installing this module in locations, which are subjected or exposed to:

- Water leakage and dust a large amount of dust, powder and other conductive power, oil mist, salt, of organic solvent exists.
- Mechanical vibrations of impacts are transmitted directly to the module body.
- Direct sunlight.
- Dew condensation due to sudden temperature change.
- High or low temperatures (outside the range of $0.55^{\circ} \mathrm{C}$)

2) Installing and Wiring

- During wiring or other work, do not allow any wire scraps to enter into it.
- Install it on locations that are convenient for operation.
- Make sure that it is not located near high voltage equipment on the same panel.
- Make sure that the distance from the walls of duct and extemal equipment be 50 mm or more.
- Be sure to be grounded to locations that have good noise immunity.

3.1.2 Handling Precautions

From unpacking to installation, be sure to check the following:

1) Do not drop it off, and make sure that strong impacts should not be applied.
2) Do not dismount printed circuit boards from the case. It can cause malfunctions.
3) During wiring, be sure to check any foreign matter like wire scraps should not enter into the upper side of the PLC, and in the event that foreign matter entered into it, alwayseliminate it.
4) Be sure to disconnect electrical power before mounting or dismounting the module.

3.2 Wiring

3.2.1 Wiring Precautions

1) Separate $A C$ and external input signal of A / D conversion module wiring not to be affected by surge or induced noise in the AC.
2) External wiring has to be at least AWG22(0.3m²) and be selected in consideration of operating ambience and/or allowable current.
3) Separate wiring from devices and/or substances generating intense heat, and oil not to make short-circuit which leads to damage and/or mis-operation.
4) Identify the polarity ofterminal block before external power supply is made connected.
5) Separate external wiring sufficiently from high voltage and power supply cable not to cause induced failure and/or malfunction.
6) Don't put the power cable in front of the LED display (In order to read the digital value on the LED correctly)

3.2.2 Wiring Examples

1) G3F-AD4A
(1) Voltage Input

*1 For the cable, use a two-core twisted shielded wire.
*2 The SLD terminal and AGND terminal has to be connected.
*3 When there is much noise, the SLD teminal and FG terminal has to be grounded
*4 Input resistance has been shown.
*5 When there is much noise, FG of the power supply module must be grounded.

2) G4F-AD2A

(1) Voltage Input

(2) Current Input

*1 For the cable, use a two-core twisted shielded wire.
*2 The SLD terminal and AGND terminal has to be connected.
*3 When there is much noise, the SLD terminal and FG terminal has to be grounded.
*4 Input resistance has been shown.
*5 When there is much noise, FG of the power supply module must be grounded.

3) G3F-AD4B

(1) Voltage Input

(2) Current Input

*1 For the cable, use a two-core twisted shielded wire.
*2 When there is much noise, shielded wire has to be grounded
*3 When there is much noise, the shielded wire and FG terminal has to be grounded.

CHAPTER 4. FUNCTION BLOCK

This shows function block for A/D conversion module on the GMWIN.
A kind of function block is as follows.

No	G3F-AD4A		G4F-AD2A		G3F-AD4B		Function
	Local	Remote	Local	Remote	Local	Remote	
1	AD4INI	ADR4INI	AD2INI	ADR2INI	AD4BINI	ADR4BINI	Initializing module
2	AD4ARD	ADR4RD	AD2ARD	ADR2RD	AD4BARD	ADR4BRD	Reading A/D conversion value(Array Type)
3	AD4RD	-	AD2RD	-	AD4BRD	-	Reading A/D conversion value(Single Type)

4.1 Insertion of the Function Block for A/D Conversion Module on the GMWIN

Function Block is inserted on the execution of the GMWIN according to following procedure.
Function block can be inserted only in the open condition of the Project.

4.2 Local Function Block

4.2.1 Module Initialization: (G3F-AD4A: AD4INI, G4F-AD2A: AD2INI, G3F-AD4B: AD4BINI)

Module Initialization function block is a program for the use in setting baselocation number and the slot location number of an A/D conversion module, specifying an available channel enable, a data type for A/D conversion, filter processing data, and average processing data.

Function block	I/O	Variable	Data type	\quad Descriptions

REMARK

*note 1: The number of array is G3F-AD4A of 16, G3F-AD4B of 16 and G4F-AD2A of 4.
*note 2: The number of array is G3F-AD4A of 4, G3F-AD4B of 16 and G4F-AD2A of 4 .
On the G3F-AD4A, the element number (0) is specified to channel $0,1,2,3$ in block, the element number (1) is specified to channel $4,5,6,7$, in block. the element number (2) is specified to channel $8,9,10,11$ in block. the element number (3) is specified to channel $12,13,14,15$ in block.
On the G4F-AD2A, the element numbers means the channel ones.
*note 3 : Only on the G3F-AD4B, the number of array is 16 , the element numbers means the channel ones.

4.2.2 Module Reading-Array Type : (G3F-AD4A : AD4ARD, G4F-AD2A : AD2ARD, G3F-AD4B : AD4BARD)

Array type of function block for reading the module is performed for every channel in block and the specified channels are used to read output variable of data displayed from ADD conversion digital value.

Function Block	1/0	Variable	Data type	Descriptions
	Input	REQ	BOOL	Function Block Execution Request Area - The execution of function blockreading is requested in this area. - If the status to be connected with this area is satisfied on the program operation and input condition changes from low(0) to high(1), function block initialization for the module is executed.
		BASE	USINT	Base Module Location Number Area - The baseNo. on which A/D conversion module is mouned is written on this area. - Setting range: GM1 series(0 to 31), GM2 series(0 to 7), GM3/4 series(0 to 3)
		SLOT	USINT	Slot Location Number Area - The slot No. on which A/D conversion module is mounted is written on this area. - Setting range: 0 to 7
		CH	BOOL [Array] *note1	Available Channel Specification Area - Available channels are specified in this area. - Enabled channels are specified to 1 and disabled channels are specified to 0 .
	Output	DONE	BOOL	Function Block Execution Complete Area - When function block reading is executed with no error, 1 is written and until next execution, 1 is continuing. When error occurs, 0 is written and operation come to stop
		STAT	USINT	Error Code Display Area - When error occurs during function blockreading, the error code number is written. - Error code is referred to Section 4.4.
		ACT	BOOL [Array] *note1	Channel Operation Display Area - The channel specified after executing the function block read with no error is right, 1 is written and, on the non-specified channel, 0 is written
		DATA	INT [Array] *note1	A/D Conversion Value Output Area

REMARK

*note 1: The number of array is G3F-AD4A of 16, G3F-AD4B of 16 and G4F-AD2A of 4 , the element numbers means the channel ones.

4.2.3 Module Reading - Single Type : (G3F-AD4A : AD4RD, G4F-AD2A : AD2RD, G3F-AD4B : AD4BRD)

Single type of function block for reading the module is performed for only one channel and the specified channel is used to read output variable of data displayed from A/D conversion digital value.

Function Block	I/0	Variable	Data type	Descriptions
	Input	REQ	BOOL	Function Block Execution Request Area - The execution of function block reading is requested in this area. - If the status to be connected with this area is satisfied on the program operation and input condition changes from $\operatorname{low}(0)$ to high(1), function block initialization for the module is executed.
		BASE	USINT	Base Module Location Number Area - The base No. on which A/D conversion module is mounted is written on this area. - Setting range : GM1 series(0 to 31), GM2 series(0 to 7), GM3/4 series(0 to 3)
		SLOT	USINT	Slot Location Number Area - The slot No. on which A/D conversion module is mounted is written on this area. - Setting range: 0 to 7
		CH	USINT	Available Channel Specification Area - Available channels are specified in this area. - Setting range: G3F-AD4A/G3F-AD4B : 0 to 15, G4F-AD2A : 0 to 3
	Ouput	DONE	BOOL	Function Block Execution Complete Area - When function block reading is executed with no error, 1 is written and until next execution, 1 is continuing. When error occurs, 0 is written and operation come to stop.
		STAT	USINT	Error Code Display Area - When error occurs during function block initialization, the error code number is written. - Error code is referred to Section 4.4.
		DATA	INT	A/D Conversion Value Output Area

4.3 Remote Function Block

4.3.1 Module Initialization : (G3F-AD4A: ADR4INI, G4F-AD2A: ADR2INI, G3F-AD4B: ADR4BINI)

Module Initialization function block is a program for the use in setting the location number of the slot on which the communication module of A/D conversion module of the master station is mounted, the address number of communication module which a remote I/O station has, the base location number, and the slot location number, and specifying the available channel enable, a data type for A/D conversion, filter process
data, and average process data.

Function Block	1/0	Variable	Data type	Descriptions
 C3F-AD4B	Input	$\begin{aligned} & \text { REQ } \\ & \text { NET_ } \\ & \text { NO } \end{aligned}$	BOOL USINT	Function Block Execution Request Area onRising Edge. - The execution of write function block is requested in this area. - If the status to be connected with this area is satisfied on the program operation and input condition changes from low(0) to high(1), function blockinitialization for the module is executed. The location number of the slot on which the transmission module of the master station is mounted. -Setting range: 0 to 7
		ST_NO	USINT	Station number of thecommunication module which a remote I / O station has. - Setting range : 0 to 63
		BASE	USINT	Base Location Number Area - The baseNo. on which A/D conversion module is mounted is written on this area. - Setting range: 0 to 3
		SLOT	USINT	Slot Location Number Area - The slot No. on which A/D conversion module is mouned is written on this area. - Setting range: 0 to 7
		CH	$\begin{aligned} & \hline \text { BOOL } \\ & \text { [Array] } \\ & \text { *note1 } \end{aligned}$	Available Channel Specification Area - Available channels are specified in this area. - Enabled channels are specified to 1 and disabled channels are specified to 0 .
		$\begin{aligned} & \hline \mathrm{IN}-{ }_{\text {SEL*}} \\ & \text { Snote3 } \end{aligned}$	$\begin{aligned} & \hline \text { BOOL } \\ & \text { [Array] } \end{aligned}$	Analog Input Type(current/voltage) Specification Area -0 is for the select of current input. -1 is for the select of voltage input.
		DATA TYPE	BOOL [Array] *note1	Output Data Type Specification Area - Output digital data type for each channel is specified in this area. -0 is for the range of -192 to 16191. (G3F-AD4B: $0 \sim 16000$) -1 is for the range of -8192 to 8191 . (G3F-AD4B: -8000~8000)
		$\begin{array}{r} \text { FILT } \\ \text { EN } \end{array}$	BOOL [Array] *note2	Filter Process En able Specification Area -0 is for the sampling processing. -1 is for the filter processing.
		$\begin{aligned} & \text { FILT } \\ & \text { _VAL } \end{aligned}$	USINT [Array] *note2	Filter Constant Setting Area - Setting range: 1 to 99
		$\begin{aligned} & \text { AVG } \\ & \text { EN } \end{aligned}$	BOOL [Array] *note2	Average Process Enable Specification Are a -1 is for the average processing. -0 is for the sampling process.
		$\begin{aligned} & \text { AVG_ } \\ & \text { SF } \end{aligned}$	BOOL [Array] *note2	Average process Type Specification Area -1 is for the time average. -0 is for the number average.
		NUM TIME NDR	USINT [Array] *note2 BOOL	Average Number or Average Time Set Area - The number or time is set in accordance with the average process type specified on the AVG_SEL. - Average number :2 to 4000(count) - Average time : G3F-AD4AG3F-AD4B 96 to12,000(ms), G4F-AD2A: 40 to 20,000(ms) When function block execution is completed with no error, 1 is written. During the scan which the execution condition has been made, 1 is continuing and at the next scan. 0 is written.
		ERR	BOOL	Error Data Display Area - When error occurs during function block initialization, 1 is written and the operation comes to stop. During the scan which the execution condition has been made, 1 is continuing and at the next scan, 0 is written.
		STAT	USINT	Error Code Display Area - When error occurs during function block initialization, the error code number is written. - Error code is referred to Section 4.4.
		ACT	$\begin{aligned} & \hline \text { BOOL } \\ & \text { [Array] } \\ & \text { *note1 } \end{aligned}$	Channel Operation Display Area - The channel specified after executing the function block initialization with no error is right, 1 is written and, on the non-specified channel, 0 is written.

REMARK

*note 1 : The number of array is G3F-AD4A of 16, G3F-AD4B of 16 and G4F-AD2A of 4 .
*note 2 : The number of array is G3F-AD4A of 4, G3F-AD4B of 16 and G4F-AD2A of 4.
On the G3F-AD4A, the element number (0) is specified to channel $0,1,2,3$ in block, the element number (1) is specified to channel $4,5,6,7$, in block. the element number (2) is specifiedto channel $8,9,10,11$ in block. the element number (3) is specified to channel $12,13,14,15$ in block.
On the G4F-AD2A, the element numbers means the channel ones.
*note 3 : Only on the G3F-AD4B, the number of array is 16 , the element numbers means the channel ones.

4.3.2 Module Reading: (G3F-AD4A: ADR4RD,G4F-AD2A: ADR2RD, G3F-AD4B: ADR4BRD)

Function block for reading the module is performed for every channel in block and the specified channels are used to read ouput variable of data displayed from A/D conversion digital value.

Function Block	1/0	Variable	Data type	Descriptions
G3F-AD4A (G3F-AD4B, G4F-AD2A)	Input	REQ	BOOL	Function Block Execution Request Area - The execution of read function block is requested in this area. - If the status to be connected with this area is satisfied on the program operation and input condition changes from low(0) to high(1), function block reading for the module is executed.
		NET_ NO ST_NO	USINT USINT	The location number of the slot on which the communication module of the master station is mounted. - Setting range: 0 to 7 The station number of the communication module which a remote I/O station has. - Setting range : 0 to 63
		BASE	USINT	Base Module Location Number Area -The base No. on which A/D conversion module is mouned is written on this area. - Setting range : 0 to 3
		SLOT	USINT	Slot Location Number Area - The slot No. on which A/D conversion module ismounted is written on this area. - Setting range: 0 to 7
		CH	BOOL [Array] *note1	Available Channel Specification Area - Available channels are specified in this area. - Enabled channels are specified to 1 and disabled channels are specified to 0 .
	Output	NDR	BOOL	When function block execution is completed with no error, 1 is written. During the scan which the execution condition has been made, 1 is continuing and at the next scan. 0 is written.
		ERR	BOOL	Error Data Display Area - When error occurs during the execution of function block reading, 1 is written and the operation come s to stop. During the scan which the execution condition has been made, 1 is continuing and atthe next scan, 0 is written.
		STAT ACT	USINT BOOL [Array] *note1	Error Code Display Area - When error occurs during the execution of function block reading, the error code number is written. - Error code is referred to Section4.4. Channel Operation Display Area -The channel specified after executing the function block reading with no error is right, 1 is written and, on the non-specified channel, 0 is written.
		DATA	INT [Array] *note1	A/D Conversion Value Output Area

REMARK

*note 1: The number of array is G3F-AD4A of 16, G3F-AD4B of 16 and G4F-AD2A of 4 , the element numbers means the channel ones.

Chapter 4. FUNCTION BLOCK

4.4 Errors on Function Block

This shows errors and resolutions in accordance with them.

$\begin{aligned} & \text { STAT } \\ & \text { No. } \end{aligned}$	Local IRemote	Descriptions	Function block			Resolutions
			Initializa		ad	
			tion	Array type	$\begin{aligned} & \text { Single } \\ & \text { type } \end{aligned}$	
0	Local	Operating with no fault	0	0	0	
1		The base location number is exceeding the proper setting range	0	0	0	Correct the number in accordance with the proper range (See Section 4.2)
2		H/W error of the base	0	0	0	Contact the service station
3		The slot location number is exceeding the proper setting range	0	0	0	Set the right number to the slot loading the A / D conversion module
4		The A/D conversion module on the slot is empty	0	0	0	Load the A/D conversion module to the specified slot
5		The module loaded isn't the A/D module	0	0	0	Load the A/D conversion module to the specified slot
6		The channel number is exceeding the proper range	-	-	0	Specify the available channel correctly
7		H/W error of the A/D conversion module	0	0	0	Contact the service station
8		The A/D conversion module's shared memory error	0	0	0	Contact the service station
9		The available channels are not specified	-	0	0	Make a correct specification of the available channel on the initialize function block
10		Test mode	-	0	0	Transmit the test mode to normal mode (G4F-AD2A only)
16		Fiter value exceeding the proper range	0	-	-	Correct the value to the range of 1 to 99
17		Average number/time value exceeding the proper range	0	-	-	Correct the value to the proper range (Number:2 to 4,000 Time: G3F-AD4A, G3F-AD4B 96 to 12,000 (ms) G4F-AD2A 40 to $20,000(\mathrm{~ms})$)
128	Remote	H/W error of the communication module for remote	0	0	-	See the manual for the remote communication module
129		The base location number is exceeding the proper setting range	0	0		Correct the number in accordance with the proper range (See Section 4.2)
131		The slot location number is exceeding the proper setting range	0	0		Set the right number to the slot mounting the A/D conversion module
133		The module loaded isn't the A/D module	0	0		Mount the A/D conversion module to the specified slot
135		H/W error of the A/D conversion module	0	0		Contact the service station
136		The A/D conversion module's shared memory error	0	0		Contact the service station
137		The available channels are not specified	-	0		Make a correct specification of the available channel on the initializing function block
138		Test mode	-	O		Transmit the test mode to normal mode (G4F-AD2A only)
144		Filter value exceeding the proper range	0	-		Correct the value to the range of 1 to 99
145		Average number/time value exceeding the proper range	0	-		$\begin{aligned} & \text { Correct the value to the proper range } \\ & \text { (Number:2 to 4,000 } \\ & \text { Time: G3F-AD4A, G3F-AD4B } 96 \text { to } 12,000(\mathrm{~ms}) \\ & \quad \text { G4F-AD2A } 40 \text { to } 20,000(\mathrm{~ms}) \text {) } \end{aligned}$

Chapter 5. GM PROGRAMMING

5.1 Programming for Distinction of A/D Conversion Value

1) System Configuration

GM3-	GM3-	G3F-	G3Q-
PA1A	CPUA	AD4A	RY4A

2) Initial Settings

(1) Available channel enable : channel $0,2,4$
(2) Conversion data range: -192 to 16191 (channel $0,2,4$)
(3) Filter channel enabled : channel 0
(4) Filter constant setting : channel $0=50$
(5) Average processing setting : channel 2,4
(6) Number average setting and set value : channel $2=100$ count
(7) Time average setting and set value : channel $4=200 \mathrm{~ms}$
(8) Analog input : current input(DC -20 ~ 20 mA)

3) Descriptions of the Program

(1) The digital value less than 12,000 of channel 0 turns $\% \mathrm{Q} 0.1 .0$ on.
(2) The digital value more than 13,600 of channel 2 turns \%Q0.1.1 on.
(3) The digital value more than 12,000 or same, and less than 13,600 or same of channel 4 turns $\% Q 0.1 .2$ on.
(4) The digital value of the same as 12,800 of channel 4 turns \%Q0.1.3 on.

4) Programming

(1) G3F-AD4A
A) Precautions of the programming

REMARK

- In the Initial setting

1) At the part of (3), if channel 0 is enabled to the filter processing, channel 0 to 3 will be enabled to the filter processing in block.
2) At the part of (4), if channel 0 is enabled to the filter constant, channel 0 to 3 will be enabled to the filter constant of 50 in block.
3) At the part of (5), if channel2 and 4 are enabled to the average processing, channel 0 to 3 and 4 to 7 will be enabled to the average processing in block.
4) At the part of (6), if channel 2 is enabled to the number average value of 100 , channel 0 to3 will be enabled to the number average value of 100 in block.
5) At the part of (7), if channel 4 is enabled to the time average value of 200 ms , channel 4 to 7 will be enabled to the time average value of 200 ms in block.
B) Programming Example

C) Specifying initial value of input/output variables on the program.
(a) Specifying channels

(b) Specifying fiter enable/disable

D) Input/output variables on Programming

Variable Name	Var_Kind	Data Type	(AT Address) (Initial Value)
AD_CH	: VAR	: ARRAY [0..15] OF BOOL	$:=\{1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0\}$
AD_INI	: VAR	: FB instance	
AD_RD	: VAR	: FB instance	
AVG_EN	: VAR	: ARRAY [0.3] OF BOOL	$:=\{1,1,0,0\}$
AVG_SEL	: VAR	: ARRAY [0..3] OF BOOL	$:=\{0,1,0,0\}$
DATA	: VAR	: ARRAY [0..15] OF INT	
DATATYPE	: VAR	: ARRAY [0.15] OF BOOL	$:=\{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0\}$
FILT_EN	: VAR	: ARRAY [0..3] OF BOOL	$:=\{1,0,0,0\}$
FILT_VAL	: VAR	: ARRAY [0.3] OF USINT	$:=\{50,0,0,0\}$
INI_ACT	: VAR	: ARRAY [0..15] OF BOOL	
INI_STAT	: VAR	: USINT	
NUM_TIME	: VAR	: ARRAY [0..3] OF UNIT	$:=\{100,200,0,0\}$
RD_ACT	: VAR	: ARRAY [0..15] OF BOOL	
RD_STAT	: VAR	: USINT	
READY	: VAR	: BOOL	
START	: VAR	: BOOL	

(2) G3F-AD4B
A) Input/output variables on Programming

Variable Name		Var_Kind	Data Type	(AT Address) (Intital Value)
AD_CH		: VAR	: ARRAY [0..15] OF BOOL	$:=\{1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0\}$
AD_INI		: VAR	: FB instance	
AD_RD		: VAR	: FB instance	
AVG_EN	※1	: VAR	: ARRAY [0..15] OF BOOL	$:=\{0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0\}$
AVG_SEL	※2	: VAR	: ARRAY [0.15] OF BOOL	$:=\{1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0\}$
DATA		: VAR	: ARRAY [0..15] OF INT	
DATATYPE		: VAR	: ARRAY [0..15] OF BOOL	$:=\{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0\}$
FILT_EN	※3	: VAR	: ARRAY [0.15] OF BOOL	$:=\{1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0\}$
FILTVAL	※4	: VAR	: ARRAY [0..15] OF USINT	$:=\{50,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0\}$
INI_ACT		: VAR	: ARRAY [0..15] OF BOOL	
IN_SEL	※5	: VAR	: ARRAY [0.15] OF BOOL	$:=\{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0\}$
INI_STAT		: VAR	: USINT	
NUM_TIME	※6	: VAR	: ARRAY [0..15] OF UNIT	$:=\{0,0,100,0,200,0,0,0,0,0,0,0,0,0,0,0\}$
RD_ACT		: VAR	: ARRAY [0..15] OF BOOL	
RD_STAT		: VAR	: USINT	
READY		: VAR	: BOOL	
START		: VAR	: BOOL	

B) The difference of G3F-AD4A and G3F-AD4B
(a) It is different only to input variable of initial function block
(b) $※ 1$ is used only to the G3F-AD4B
(c) $※ 2, ※ 3, ※ 4, ※ 5, ※ 6$ are filter and average processing function, it is processed 4 channel in block of the G3F-AD4A and is processed every channel of the G3F-AD4B

Section	Input Variable Name	G3F-AD4A		G3F-AD4B		Remark
		Variable Name	Data type	Variable Name	Data type	
※1	AVG_EN	AVG_EN	ARRAY[0..3] OF BOOL	AVG_EN	ARRAY[0.15] OF BOOL	
※2	AVG_SEL	AVG_SEL	ARRAY[0..3] OF BOOL	AVG_SEL	ARRAY[0.15] OF BOOL	
※3	FILT_EN	FILT_EN	ARRAY[0..3] OF BOOL	FILT_EN	ARRAY[0..15] OF BOOL	
※4	FILTVAL	FILT_VAL	ARRAY[0.3] OF USINT	FILT_VAL	ARRAY[0..15] OF USINT	
※5	IN_SEL	-	-	IN_SEL	ARRAY[0.15] OF BOOL	Only G3F-AD4B
※6	NUM_TIME	NUM_TIME	ARRAY[0.3] OF USINT	NUM_TIME	ARRAY[0..15] OF USINT	

C) Programming Example

7.2 Programming for Display of A/D Conversion Value and Error Code on BCD Display

1) System Configuration

2) Initia Settings

(1) Available channel enabled : channel 0 ,
(2) Time average processing specification: 100 ms
(3) Data oupput type setting:-192 to 16191
(4) Analog input : current input(DC -20 to 20 mA)

3) Descriptions of the Program

(1) \% I0.1.0 tuming On leads to the initial setting of A/D conversion module.
(2) \%I0.1.1 turning On leads to displaying A/D conversion value on the BCD display.(\%Q0.1.0 to \%Q0.1.19)
(3) \% I0.1.2 turning On leads to displaying error code of function block on the BCD display, (\%Q0.2.0 to \%Q0.2.7)

5) Inputloutput variables on the programming

Variable Name	Var Kind	Data Type	(AT Address) (Initial Value)
AD_CH	: VAR	ARRAY [0..15] OF BOOL	$=\{1,0,0,0,0,0,0,0,0,0,0,0,00,0,0\}$
AD_INI	VAR	: FB Instance	
AD_RD	:VAR	: FB Instance	
AVG_EN	VAR	ARRAY [0.3] OF BOOL	$:=\{1,0,0,0\}$
AVG_SEL	VAR	: ARRAY [0..3] OF BOOL	$=\{1,0,0,0\}$
CHO_DATA	: VAR	: INT	
DATA	:VAR	: DINT	
DATATYPE	: VAR	:ARRAY [0..15] OF BOOL	$:=\{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0\}$
FILT_EN	:VAR	ARRAY [0.3] OF BOOL	$:=\{0,0,0,0\}$
FILT_VAL	: VAR	ARRAY [0..3] OF USINT	$:=\{0,0,0,0\}$
INI_ACT	, VAR	ARRAY [0.15] OF BOOL	
INI_STAT	VAR	USINT	
NUM_TIME	VAR	ARRAY [0.3] OF UINT	$=\{100,0,0,0\}$
RD_STAT	: VAR	: USINT	
START	: VAR	BOOL	

7.3 Programming for Loading the A/D Conversion Module

on Remotel/O Station

1) System Configuration

2) Initial Settings

(1) A / D conversion enabling channel: channel 0
(2) Conversion data range: -192 to 16191
(3)Time average processing channel: channel 0 (setting value: $1,000 \mathrm{~ms}$)

3) Descriptions of the Program

(1)The digital value less than 8000 of channel 0 turns \%Q0.1.0 on.
(2)The digital value more than 8000 or same, and less than 10,000 or same of channel 0 tums \%Q0.1.1 on.
(3)The digital value more than 10,000 or same, and less than 12,000 of channel 0 turns \%Q0.1.2 on.
(4)The digital value more than 12,000 or same of channel 0 turns \%Q0.1.3 on.

4) Programming example

5) Input/output variables used on the programming

Variable Name	Var Kind	Data Type	(AT Address) (Initial Value)
AD_CH	: VAR	: ARRAY [0..3] OF BOOL	$:=\{0,0,0,0\}$
AD_DATA	: VAR	: ARRAY [0.3] OF INT	
AD_INI	:VAR	: FB Instance	
AD_RD	:VAR	: FB Instance	
AVG_EN	: VAR	ARRAY [0.3] OF BOOL	$=\{1,0,0,0\}$
AVG_SEL	:VAR	ARRAY [0.3] OF BOOL	$=\{1,0,0,0\}$
DATATYPE	: VAR	:ARRAY [0.3] OF BOOL	$=\{0,0,0,0\}$
FILT_EN	:VAR	ARRAY [0..3] OF BOOL	$=\{0,0,0,0\}$
FILT_VAL	VAR	: ARRAY [0..3] OF USINT	$:=\{0,0,0,0\}$
INI_ACT	:VAR	: ARRAY [0..3] OF BOOL	
INI_ERR	:VAR	BOOL	
INI_STAT	: VAR	: USINT	
NUM_TIME	:VAR	ARRAY [0..3] OF UINT	$:=\{1000,0,0,0\}$
RD_STAT	VAR	: ARRAY [0.3] OF BOOL	
RD_ERR	:VAR	BOOL	
RD_STAT	: VAR	: USINT	
READY	: VAR	: BOOL	

Chapter 6. BUFFER MEMORY CONFIGURATION AND FUNCTION

The A/D conversion module has a buffer memory for communication of data with the PLC CPU.

6.1 Buffer Memory Configuration

6.1.1 G3F-AD4A buffer memory

Chapter 6. BUFFER MEMORY CONFIGURATION AND FUNCTION

6.1.2 G3F-AD4B buffer memory

Address (Decimal)	Descriptions	Detail descriptions	Non-initialization	Remark
47.	A/D Conversion value to channel 8			
48.	A/D Conversion value to channel 9			
49.	A/D Conversion value to channel 10			
50.	AID Conversion value to channel 11			
51.	A/D Conversion value to channel 12			
52.	A/D Conversion value to channel 13			
53.	A/D Conversion value to channel 14			
54.	A/D Conversion value to channel 15			
55.	Channel operation data	Biton(1):Operation, Bit off(0):Operation stop	Operation stop	
56.	Error code to channel 0			
57.	Emor code to channel 1			
58.	Error code to channel 2			
59.	Error code to channel 3			Read only enable
60.	Error code to channel 4			
61.	Error code to channel 5			
62. 63.	Error code to channel 6 Error code to channel 7	0 : Normal operation		
64.	Error code to channel 8	16 : Filter constant setting range exceeding 17 : Average number/time constant setting range exceeding	-	
65.	Error code to channel 9			
66.	Error code to channel 10			
67.	Error code to channel 11			
68.	Error code to channel 12			
69.	Error code to channel 13			
70.	Error code to channel 14			
71.	Error code to channel 15			

6.1.3 G4F-AD2A buffer memory

Address (Decimal)	Descriptions	Detail descriptions	Non-initialization	Remark
0.	Available channel specification	Bit on(1): Channel enable Bit off(0): Channel disable	No allowance for use	Read/Write enable
1.	Data output type specific ation	$\begin{aligned} & \text { Bit on(1): }-8192 \text { to } 8191 \\ & \text { Bit off(0): }-192 \text { to } 16191 \end{aligned}$	Set the data output type to -192 to 16191	
2.	Filter processing specification	Bit on(1): Filter processing Bit off(0): Sampling processing	process by sampling	
3.	Filter constant setting to channel 0			
4.	Filter constant setting to channel 1			
5	Filter constant setting to channel 2			
6.	Filter constant setting to channel 3			
7.	Average processing specification	Bit on(1): Average processing Bit off(0): Sampling processing	Process by sampling	
8.	Time/Number average specification	Bit on(1): Time average Bit off(0): Number average	Specifyto number average	
9.	Average time/number setting to channel 0	Setting range Tme average: 40 to 20,000 (ms) umber average: 2 to 4,000 (count)	Setto the constant "40"	
10	Average time/number setting to channel 1			
11.	Average time/number setting to channel 2			
12.	Average time/number setting to channel 3			
13.	Set data specification	Bit on(1):Change the bufferof address 0 to 12 Bit off()):Remain the buffer of address 0 to 12 in the precious value	Non-specification	
14.	A/D Conversion value to channel 0			Read only enable
15.	A/D Conversion value to ch annel 1			
16.	A/D Conversion value to channel 2			
17	A/D Conversion value to channel 3			
18.	Channel operation data	Bit on(1): Operation Bit off(0): Operation stop	Operation stop	
19.	Error code to channel 0	0 : Normaloperation	-	
20	Error code to channel 1	16 : Fiter constant setting range		
21.	Error code to channel 2	17 : Averagenumber/time constant		
22.	Error code to channel 3			

62 Buffer Memory Functions

- Each address of buffer memory has been occupied by one word, and it is displayed as 16 Bit
- Each address is composed of 16 Bit, and each Bit can be executed by specifying Bit on to 1 or Bit off to 0
6.2.1 Available Channel Specification Area (G3F-AD4A,G3F-AD4B: address 0, G4F-AD2A: address 0)

1) A/D conversion enable/ disable can be specified for every channel.
2) Banning disabled channel conversion turns the sampling period short
3) If enable channel isn't specified, every channel comes to be disabled
4) A/D conversion enable/disable is like this as follows.
(1) G3F-AD4A, G3FAD4B

Address "0"

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit9	Bit8	Bit7	Bit6	Bit 5	Bit 4	Bit 3	Bit2	Bit 1	Bit 0
		$\begin{aligned} & \text { M } \\ & \text { M } \\ & \text { DE } \\ & \text { 픙 } \end{aligned}$		$\begin{aligned} & \bar{F} \\ & \overline{\mathrm{w}} \\ & \text { 픙 } \end{aligned}$	$\begin{aligned} & \text { 을 } \\ & \text { (10 } \\ & \text { 흥 } \end{aligned}$		∞ $\stackrel{\infty}{\text { in }}$ 흥		\circ 힌 흥	$\begin{aligned} & \hline \text { © } \\ & \text { (} \\ & \text { (1) } \\ & \text { 틍 } \end{aligned}$				$\begin{aligned} & \hline \bar{\sigma} \\ & \overline{\underline{\omega}} \\ & \text { 흥 } \end{aligned}$	

(2) G4F-AD2A

[Bit Off(0): Conversion disable, Bit On(1): Conversion enable]

6.2.2 Input Used Type Specification Area (G3F-AD4B: address 1)

1) Input used type can be specified for every channel only the G3F-AD4B 2) Input used type(current/voltage) specification is like this as follows.

Address "1"

Input used type specification [Bit Off(0): current input, Bit On(1): voltage input]

6.2.3 Data Output Type Specification Area (G3F-AD4A: address 1, G4F-AD2A: address 1, G3F-AD4B:address2)

1) Digital data output type from analog input can be specified for every channel.
2) If output data type isn't specified, every channel will be set to the range of -192 to 19161 for the G3F-AD4A and the G4F AD2A, and set to the range of 0 to 16000 for the G3F-AD4B.
3) Data output type specification is like this as follows.
(1) G3F - AD4A, G3F-AD4B

(2) G4F - AD2A

[Bit Off(0) : -192~16191, Bit On(1) :-8192~8191]
6.2.4 Filter Processing EnablelDisableSpecification Area (G3F-AD4A: address2,G4F-AD2A: address 2

G3F-AD4B:address3)

1) Filter processing enable/disable can be specified to 4 channels of the K7F-AD4A, 1 channel of the K4F-AD2A and the G3F-AD4B.
2) When filter processing isn't specified, sampling processes every channel.
3) Filter processing specification is as follows.
(1) G3F-AD4A

Address " 2 "

A) 4 bits are available, and 1 bit for fiter processing is performed for continuous 4 channels in block.

Bit 0 : Filter processing enable/disable to channel $0,1,2,3$ is specified in block.
Bit 1: Filter processing enable/disable to channel $4,5,6,7$ is specified in block.
Bit 2: Filter processing enable/disable to channel $8,9,10,11$ is specified in block.
Bit 3 : Filter processing enable/disable to channel $12,13,14,15$ is specified in block
B) Filter processing enable/disable to 4 channel in a bit shouldh' t be specified by channel.
(Ex. Filter processing to channel 0 and sampling processing to channel 1 shouldn't be specified.)
(2) G3F-AD4B

Address " 3 "

Filter processing specification
[Bit Off(0) : Sampling processing, Bit On(1) :Filter processing]
(3) G4F-AD2A

Address "2"

[Bit Off(0) : Sampling processing, Bit On(1):Filter processing]

6.2.5 Filter Constant Setting Area (G3FAD4A, G4F-AD2A: address 3 to 6, G3F-AD4B: address 4to 19)

1) Fitter constant setting can be specified to 4 channels of the G3F-AD4A, 1 channel of the G4F-AD2A and the G3F-AD4B.
2) Filter constant setting range is 1 to 99.
3) When setting value is out of the range, error code number 16 is witten to buffer memory address 31 to 34(of the G3F-AD4A) and the previous data remain as A/D conversion value.
4) When fitter constant isn't set, fiter constant will be set to 1 .
5) Filter constant setting is as follows.

Address	Filter constant setting to each channel	
	G3F-AD4A	G4F-AD2A
address 3	Filter constant setting in block to channel $0,1,2,3$	Filter constant setting to channel 0.
address 4	Filter constant setting in block to channel $4,5,6,7$	Filter constant setting to channel 1
address 5	Filter constant setting in block to channel $8,9,10,11$	Filter constant setting to channel 2
address 6	Filter constant setting in block to channel 12, 13, 14, 15	Filter constant seting to channel 3.

Remark

Before average numberttime constant value is set, average processing enable/disable specifying
and numbertime average processing setting have to be set.

6.2.6 Average Processing Enable/ Disable Specification Area (G3F-AD4A: address7, G4F-AD2A :address 7, G3F -AD4B : address 20)

1) Average processing enable/disable can be specified to 4 channels of the G3F-AD4A, 1 channel of the G4F-AD2A and 1 channel of the G3F-AD4B
2) When average processing isn't specified, every channel get processed by sampling.
3) Average processing specification is as follows.
(1) G3F-AD4A

A) 4 bits are available, and 1 bit for average processing is performed for continuous 4 channels in block.

Bit 0 : Average processing enable/disable to channel $0,1,2,3$ is specified in block.
Bit 1 : Average processing enable/disable to channel $4,5,6,7$ is specified in block.
Bit 2 : Average processing enable/disable to channel $8,9,10,11$ is specified in block.
Bit 3: Average processing enable/disable to channel $12,13,14,15$ is specified in block.
B) Average processing enable/disable to 4 channel in a bit should not be specified in block.
(Ex. Average processing to channel 0 and sampling processing to channel should not be specified.)
(2) G3F-AD3B

Address "20"

Filter processing specification
[Bit Off (0): Sampling processing, Bit On (1): Average processing]
(3) G4F-AD2A

6.2.7 Number / Time Average Processing Setting Area (G3F-AD4A,G4F-AD2A: address 8, G3F-AD4B: address 21)

1) It depends on A / D conversion module channel whether average processing is followed to time or number. (G3FAD4A for 4 channel in block, G4F-AD2A/G3F-AD4B for every channel)
2) No specification of numbertime average processing leads to number average processing.
3) Number/time average processing is as follows.
(1) G3F - AD4A

A) 4 bits are available, and 1 bit for number/time average processing setting is performed for continuous 4 channels in block.

Bit 0 : Numbertime average processing to channel $0,1,2,3$ is specified in block.
Bit 1 : Numberttime average processing to channel $4,5,6,7$ is specified in block.
Bit 2 : Numbertime average processing to channel $8,9,10,11$ is specified in block.
Bit 3: Numberttime average processing to channel $12,13,14,15$ is specified in block.
B) Numberltime average processing to 4 channel in a bit should not be specified in block.
(Ex. Number average processing to channel 0 and time average processing to channel should not be specified.)
(2) G3F-AD4B

Address "21"

Numberttime average processing specification
[Bit Off(0) : Number average processing, Bit On(1) :Time average processing]
(3) G4F - AD2A

Address " $\mathbf{~}^{\prime \prime}$

[Bit Off(0) : Number average processing, Bit On(1) :Time average processing]

Remark

Before number time average processing is set, average processing enable/disable has to be specified.

6.2.8 Average Number / Time Constant Setting Area (G3F-AD4A, G4F-AD2A : address 9 to 12, G3F-AD4B :

 address 22 to 37)1) Average number/time constant setting range is as follows.
(1) Average number setting range: 2 to 4000 (count).
(2) Average time setting range: G3F-AD4A, G3F-AD4B (96 to 12000 ms), G4F-AD2A (40 to 20000ms)
2) When setting value is out of the range, error code number 17 is written to buffer memory address 31 to

34 and the previous data remain as A/D conversion value.
3) When average numbertime constant isn't set G3F-AD4A/G3F-AD4B of 96 and G4F-AD2A of 40 will be set
4) Average numbertime constant setting is as follows.

Address	Average numberttime constant setting to each channel	
	G3F - AD4A	G4F- AD2A
address 9	Average numbertime constant setting in block to channel $0,1,2,3$,	Average numberthime constant setting channel 0.
address 10	Average numbertime constant setting in block to channel $4,5,6,7$	Average numberthime constant setting channel 1
address 11	Average numbertime constant setting in block to channel $8,9,10,11$	Average numberttime constant setting channel 2
address 12	Average numbertime constant setting in block to channel $12,13,14,15$	Average numbertfime constant setting channel 3.

REMARK

Before average number/time constant value is set, average processing enable/disable Specifying and numbertime average processing setting have to be set.

62.9 SET Data Specification Area (G3F-AD4A/G4F-AD2A: address 13, G3F-AD4B: address 38)

1) When specified bit of each channel isn't turned on in the SET data specification area(address 13), A/D conversion isn't executed by A/D conversion module's data which users specified address 0 to 12 and the previous data remains. (G3F-AD4A, G4F-AD2A)
2) SET data is specified as follows.
(1) G3F - AD4A

Bit 15	14	13	Bit 12	Bit 11	Bit 10	Bit 9	Bit8	Bit 7	Bit6	Bit 5	Bit4	Bit 3	Bit2	Bit 1	
\cdots				$\begin{aligned} & \text { 히 } \\ & \text { 흥 } \\ & \text { (} \end{aligned}$	镻		坒				$\frac{\stackrel{\rightharpoonup}{0}}{\circ}$	등			흥

SET data specification [Bit Off(0) : Disable, Bit On(1) : Enable]
(2) G4F - AD2A

(3) G3F-AD4B

6.2.10 Digital Output Area (G3F-AD4A : address 14 to 29, G4F-AD2A : address 14 to 17, G3F-AD4B : address 39 to 54)

1) Digital output value to analog input value through terminals is stored in this area.
2) When error occurs, the previous digital value remains.
6.2.11 Channel Operation Data Storage Area (G3F-AD4A : address 30, G4F-AD2A : address 18, G3F-AD4B : address 55)

Channel operation data is stored in this area.
(1) G3F - AD4A, G3FAD4B

(2) G4F - AD2A

[Bit Off(0) :Stop, Bit On(1):Normal]
6.2.12 Error Code Display Area (G3F-AD4A : address 31 to 34, G4F-AD2A : address 19 to 22, G3F-AD4B :
address 56 to 71)

1) Error code is as follows.

Error code	Descriptions	Remarks
16	Filter constant setting range exceeding	RUN LED flickering(per 0.6sec)
17	Average numberttime setting range exceeding	RUN LED flickering(per 0.6sec)

2) When two types of error have occurred simultaneously, 17 and 16 are displayed in the order.
3) Error code display channel of each address is as follows.

G3F-AD4A			G4F-AD2A	
Address	Specified channel	Address	Specified channel	
31	error code display to channel $0,1,2,3$	19	error code display to channel 0	
32	error code display to channel $4,5,6,7$	20	error code display to channel 1	
33	error code display to channel $8,9,10,11$	21	error code display to channel 2	
34	error code display to channel $12,13,14,15$	22	error code display to channel 3	

Chapter 7. SPECIAL MODULE COMMAND (BUFFER MEMORY READ/ WRITE)

A/D conversion module occupies 16 I/O points.

7.1 Local Command

7.1.1 Buffer Memory Read - GET, GETP

< Distinction of GET and GETP>

GET: Continuously executes read while the read signal is on (GETP: Execute read byrising edge on the read signal

ex 1) A / D conversion module is mounted on the slot 3 of base, and data from the buffer memory address 14 and 15 is read to the CPU D14 and D15. (() : Buffer memory address of the G3F-AD4B)

Buffer memory of

7.1.2 Buffer Memory Write- PUT, PUTP

Symbol	Descriptions	Device used
n 1	Slot number assigned to special module	Integer
n 2	First address of the buffer memory of special module to which data will be written	Integer
D	First address of device which will store write data.	$\mathrm{M}, \mathrm{P}, \mathrm{K}, \mathrm{L}, \mathrm{T}, \mathrm{C}, \mathrm{D}, \mathrm{\# D}$
n 3	Number of words of data that will be written	Integer

<Distinction of PUT and PUTP>

ex1) A/D conversion module is mounted on the slot 6 of base, and data from the CPU D50 and D51 is written to the buffer memory address 3 , and $4 .($ () : Buffer memory address of the G3F-AD4B)

 for PUT

7.2 Remote Command

7.2.1 Buffer Memory Read- RGET

REMARK

To read buffer memory data of AID conversion module with RGET command, configure the
program so that execution condition of low(0) will be changed into high(1) at rising edge (_工). Or not, buffer memory data of A/D conversion module wont be read.
<ex>
[configuration]

[Buffer memory read]
Remote Station No. 11 (OBh)

1) Read buffer memory address 39 to 54 (16 Words) which A/D conversion value is stored.
2) Store read data to the next D0300
3) Sbre information on the status of communication to D0001.
[Program]

7.2.2 Buffer Memory Write-RPUT

Symbol			Descriptions	Device used
SI	$\begin{array}{\|c\|} \hline \mathrm{AB} \\ \begin{array}{c} \text { upper } \\ (8 \mathrm{bit}) \end{array} \\ \hline \end{array}$		Upper(AB): the code vale of A/Conversion module G3F-AD4A: 00h, G3F-AD4B: OAh G4F-AD2A: 80h Lower (CD): the slot number of communication module of the master station. setting range: 0 to 7	Integer
St	EF upper (8 bit)	$\underbrace{\mathrm{GH}}_{\substack{\text { lower } \\(8 \mathrm{bit})}}$	Upper(EF): Slot number of A/D conversion module of remote station. setting range: 0 to 31 Lower (GH): communication module number of remote station. setting range : 0 to 63	Integer
S	First address of device which stores write data.			M, P, K, L, T, C, D, \#D
D	First address of special module which will write data.			Integer
n	Number of words of data wite.			Integer, D
SS	Condition data display area of link			M, P, K, L, T, C, D, \#D

REMARK

> To write on buffer memory data of A/D conversion module with RPUT command, configuration the program so that execution condition of low(0) will be changed into high(1) at rising edge $\begin{array}{lll}(\quad) & \text { Or not, buffer memory data of } A / D \text { conversion module wont be updated }\end{array}$

Chapter 8. MK PROGRAMMING

8.1 Basic Programming

- This shows the method of operation condition setting for buffer memory in the AVD conversion module.
- The A/D conversion module is mounted on the slot 2.
- A/D conversion module occupies 16 I/O points.

8.1.2 G4F-AD2A

8.2 Application Programming

8.2.1 Programming for Distinction of A/D Conversion Value.

1) System Configuration

2) Initial Settings

No.	Item	Initial setting	Buffer memory address	The value of words to write	Remark
1	Available channel	Channel 0,2,4	0	h0015 or 00021	
2	Data output type	$-192 \sim 16191$	1	h0000 or 00000	
3	Filter processing enable/disable specification	Channel 0	2	h0001 or 00001	
4	Filter constant setting	50	3	h0032 or 00050	
5	Average processing enable/disable specification	Channel 2,4	7	h0003 or 00003	Ch2 : bit0 On Ch4 : bit1 On
6	Numberlimeaverage specification	Average number : ch2 Average time : ch4	8	h0002 or 00002	Ch2 : bit0 Off Ch4 : bit1 On
7	Numberltime average processing specification	Average number : 100 Average time : 200ms	9 10	h0064 or 00100 h00c8 or 00200	
8	Analog input	Input current (DC -20 ~ 20mA)	-	-	
Other	Set data specification	-	13	h0015 or 00021	

3) Descriptions of the Program

(1) Digital value less than 12000 of channel 0 turms P0010 on.
(2) Digital value more than 13600 of channel 2 turns P0011 on.
(3) Digital value 12000 or more and 13600 or less of channel 4 tums P0012 on.
(4) Digital value 12800 of channel 4 turns P0013 on.

Remark

- In the Initial setting

1) At the part of (3), if channel 0 is enabled to the filter processing, channel 0 to 3 will be enabled to the filter processing in block.
2) At the part of (4), if channel 0 is enabled to the filter constant, channel 0 to 3 will be enabled to the filter constant of 50 in block.
3) At the part of (5), if channel2 and 4 are enabled to the average processing, channel 0 to 3 and 4 to 7 will be enabled to the average processing in block.
4) At the part of (6), if channel 2 is enabled to the number average value of 100 , channel 0 to 3 will be enabled to the number average value of 100 in block.
5) At the part of (7), if channel 4 is enabled to the time average value of 200 ms , channel 4 to 7 will be enabled to the time average value of 200 ms in block.
6) Programming Example

8.2.2 Programming forDisplay of AID Conversion Value and Error Code on BCD Display. (1) System Configuration

(2) Initial settings

(1) Enabled channel: channel 0
(2) Time average processing specification:100ms
(3) Data output type seting: 0 to 16000
(4) Analog input: current input(DC 4 to 20 mA)

(3) Descriptions of the program

(1) A/D conversion module is initialized when PO000 turns on.
(2) ADD conversion value is stored to D39 and error code is stored to D56 when P0001 turns on.
(3) AID conversion value is displayed on the digital BCD display when P0002 turns on. (P0030 ~ P0037)
(4) Error code is displayed on the digital BCD display when P0003 turns on.(P0010 ~ P0023)

(4) Programming example

8.2.3 Programming for Loading the A/D ConversionModule on Remote I/O Station.

(1) System Configuration

(2) Initial Settings

(1) Enabled channel: channel 0
(2) Data output range: -192 to 16191
(3) Time average processing specification: channel 0 (Set value :1000ms)

(3) Descriptions of the Program

(1) Digital value less than 8000 of channel 0 turns P0010 on.
(2) Digital value 8000 or more and 10000 or less of channel 0 turns P0011 on.
(3) Digital value 10000 or more and 12000 or less of channel 0 turms P0012 on.
(4) Digital value more than 12000 of channel 0 turns P0013 on.

4) Programming Example

Chapter 9. TROUBLESHOOTING

This section shows the descriptions of the error code and troubleshooting during use of the AD conversion module.

9.1 Error Code

9.1.1 Error Code Indicated by RUN LED Flickering

Errors occurring during RUN LED flickering are shown as below.

RUN LED	Descriptions	Remarks
flicker(per 0.1sec)	WDT error	
	System error	
flicker(per 0.2sec)	Buffer memory error	
flicker(per 0.6sec)	Offset / gain setting error	Only G4F-AD2A

9.2 Troubleshooting

9.2.1 RUNLED Flickering

9.2.2 RUNLED Off

RUN LED off
$\sqrt{7}$

Correct installation of the A/D conversion module on the base?

> If the A / D conversion module on which errors occur is substituted for new one, normal operation?

See the Section 9.2.6

The error is occurring on other than the A/D conversion module.
For more information, see the CPU module user's manual.

9.2.3 Digital Value Unreadable from the CPU Module

9.2.4 Sudden Digital Value Change

The FG terminal of the A/D conversion module is connected with the FG terminal of the power supply module?

Connect the FG terminal of the A/D conversion module with the FG terminal of \because No the power supply module

See the Section 9.2.6

9.2.5 Analog andDigital Value Mismatch

9.2.6 A/D Conversion Module Hardware Fault

A/D conversion module hardware fault.
Please contact our representatives or the service station with fault details.

Chapter 10. DIMENSIONS
10.1 G3F-AD4A, G3F-AD4B Dimensions

10.2 G4F-AD2A Dimensions

