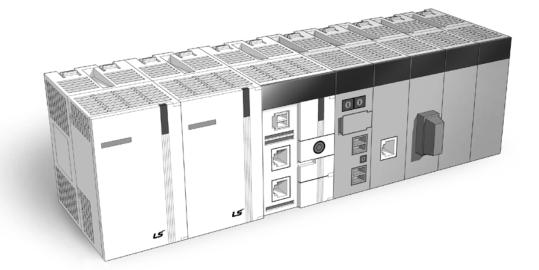
The right choice for the ultimate yield!

LS ELECTRIC strives to maximize your profits in gratitude for choosing us as your partner.

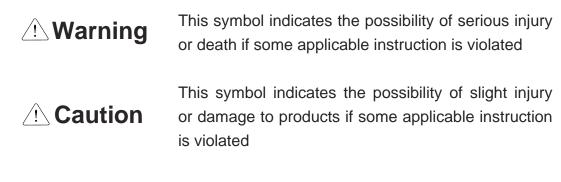

Programmable Logic Control

XGR CPU Module

XGT Series

User Manual

CPU XGR-CPUH/F XGR-CPUH/T XGR-CPUH/S Expansion drive XGR-DBST XGR-DBSF(S) XGR-DBSH(S) XGR-DBDT XGR-DBDF(S) XGR-DBDH(S)


- Read this manual carefully before installing, wiring, operating, servicing or inspecting this equipment.
- Keep this manual within easy reach for quick reference.

Before using the product ...

For your safety and effective operation, please read the safety instructions thoroughly before using the product.

- Safety Instructions should always be observed in order to prevent accident or risk with the safe and proper use the product.
- Instructions are separated into "Warning" and "Caution", and the meaning of the terms is as follows;

The marks displayed on the product and in the user's manual have the following meanings.

Be careful! Danger may be expected.

H Be careful! Electric shock may occur.

The user's manual even after read shall be kept available and accessible to any user of the product.

Safety Instructions when designing

- Please, install protection circuit on the exterior of PLC to protect the whole control system from any error in external power or PLC module. Any abnormal output or operation may cause serious problem in safety of the whole system.
 - Install applicable protection unit on the exterior of PLC to protect the system from physical damage such as emergent stop switch, protection circuit, the upper/lowest limit switch, forward/reverse operation interlock circuit, etc.
 - If any system error (watch-dog timer error, module installation error, etc.) is detected during CPU operation in PLC, the whole output is designed to be turned off and stopped for system safety. However, in case CPU error if caused on output device itself such as relay or TR can not be detected, the output may be kept on, which may cause serious problems. Thus, you are recommended to install an addition circuit to monitor the output status.
- Never connect the overload than rated to the output module nor allow the output circuit to have a short circuit, which may cause a fire.
- Never let the external power of the output circuit be designed to be On earlier than PLC power, which may cause abnormal output or operation.
- In case of data exchange between computer or other external equipment and PLC through communication or any operation of PLC (e.g. operation mode change), please install interlock in the sequence program to protect the system from any error. If not, it may cause abnormal output or operation.

Safety Instructions when designing

 I/O signal or communication line shall be wired at least 100mm away from a high-voltage cable or power line. If not, it may cause abnormal output or operation.

Safety Instructions when designing

- Use PLC only in the environment specified in PLC manual or general standard of data sheet. If not, electric shock, fire, abnormal operation of the product or flames may be caused.
- Before installing the module, be sure PLC power is off. If not, electric shock or damage on the product may be caused.
- Be sure that each module of PLC is correctly secured. If the product is installed loosely or incorrectly, abnormal operation, error or dropping may be caused.
- Be sure that I/O or extension connecter is correctly secured. If not, electric shock, fire or abnormal operation may be caused.
- If lots of vibration is expected in the installation environment, don't let PLC directly vibrated. Electric shock, fire or abnormal operation may be caused.
- Don't let any metallic foreign materials inside the product, which may cause electric shock, fire or abnormal operation.

Safety Instructions when wiring

- Prior to wiring, be sure that power of PLC and external power is turned off. If not, electric shock or damage on the product may be caused.
- Before PLC system is powered on, be sure that all the covers of the terminal are securely closed. If not, electric shock may be caused

- Let the wiring installed correctly after checking the voltage rated of each product and the arrangement of terminals. If not, fire, electric shock or abnormal operation may be caused.
- Secure the screws of terminals tightly with specified torque when wiring. If the screws of terminals get loose, short circuit, fire or abnormal operation may be caused.
- Surely use the ground wire of Class 3 for FG terminals, which is exclusively used for PLC. If the terminals not grounded correctly, abnormal operation may be caused.
- Don't let any foreign materials such as wiring waste inside the module while wiring, which may cause fire, damage on the product or abnormal operation.

Safety Instructions for test-operation or repair

- Don't touch the terminal when powered. Electric shock or abnormal operation may occur.
- Prior to cleaning or tightening the terminal screws, let all the external power off including PLC power. If not, electric shock or abnormal operation may occur.
- Don't let the battery recharged, disassembled, heated, short or soldered. Heat, explosion or ignition may cause injuries or fire.

- Don't remove PCB from the module case nor remodel the module. Fire, electric shock or abnormal operation may occur.
- Prior to installing or disassembling the module, let all the external power off including PLC power. If not, electric shock or abnormal operation may occur.
- Keep any wireless installations or cell phone at least 30cm away from PLC. If not, abnormal operation may be caused.

Safety Instructions for waste disposal

Product or battery waste shall be processed as industrial waste.
 The waste may discharge toxic materials or explode itself.

Γ

Revision History

٦

Version	Data	Main contents	Revised location
V 1.0	'08.6	First Edition	-
V 1.1	'08.7	1. Modifying contents	-
		(2) How to configure redundancy system	2-5
		(3) Performance specification	4-1,4-2
		(4) Scan Time	5-6,5-8
		(5) Program memory	5-28
		(6) I/O module skip function	6-19,6-20
		(7) Module changing wizard during RUN	6-21
		(8) Performance specification	7-1,7-3
		(9) Example of calculating consumption	8-5
		current/power	11-5
		(10) Caution in handling	11-13
		(11) Grounding	-
		2. Adding contents	1-3
		(1) XGR redundancy system configuration	2-13
		(2) Remote I/O system	5-8
		(3) Scan Time	6-20
		(4) I/O module skip	-
		3. Deleting contents	7-1
		(1) Max install-able module number in specification	
V 1.2	'09.9	1. Modifying contents	-
		(1) Performance specification	4-2
		(2) redundancy parameter setting window	5-2, CH6
		(3) Flag	A-6, A-11
V 1.3	'09.9	1. Adding contents	
		 Contents on redundancy system communication operation setting (ONE IP Solution) 	6-18~20
		2. modifying contents	
		(1) Product list (add new products)	
		- XGR-DC32, XGR-DMMA	2-1
		- XGF-SOEA	2-3
		- XGL-EIPT	2-4

Version	Data	Main contents	Revised location
V 1.4	'09.12	1. Adding contents	Ch8.1, Ch8.2, Ch8.3
		(1) adding contents related to DC power	
V 1.5	'10.03	1. Adding contents	
		(1) Contents on reset/D.Clear	4-6
		(2) Contents on Cnet/FEnet module equipment	2-7
		(3) Contents on redundancy parameter	5-8~9
		(4) Warning flag	App-8
		(5) Smart Link wiring diagram and Event input module specifications	9-24~25
		2. Modifying contents	
		(1) Contents on parameter setting window	5-4, 6-1, 6-14~15
		(2) Contents on Fault mask setting	6-20
		(3) Module replacement	6-23~24
V 1.6	'10.10	1. Modifying contents	
		(1) Modifying contents	Ch3.1
		(2) Adding contents	Ch5.1.2
		(3) Adding modules	Ch5.1.4
		(4) Modifying contents on redundancy parameter	Ch5.1.4
		(5) Modifying contents on basic parameter	Ch6.7.1
V 1.7	'10.10	1. Modifying contents	
		(1) Overview	Ch1.1
		(2) System configuration	Ch2.1
		(3) Power module	Ch8.4.1
		(4) Base and expansion cable	Ch101.1
V 1.8	'10.10	1. Adding contents	
		(1) Adding contents on redundancy parameter	Ch5.1.4
		(2) Adding contents on redundancy parameter	Ch6.8.1
		(3) Adding contents on redundancy parameter	Ch6.9

Г

Version	Data	Main contents	Revised location
V 1.9	'11.06	1. Adding contents	
		(1) Adding module on Extension redundancy	1-1, 2-1, 7-2
		(2) Adding contents on Extension redundancy	1-3, 1-4, 2-8, 6-25,
			8-3, 10-2, 14-28
		(3) Adding contents on Flag	App-3/7/11/13
		(4) Adding optical single module	1-1, 2-1, 2-6, 4-1, 4-2, 7-1
V 2.0	'13.01	1. Adding contents	
		(1) Adding Redundancy Expansion Base	2-1, 10-1
		(2) Built-in PID Function	Ch 14
		2.Modifying contents	
		(1) Modifying EtherNet/IP	1-6, 2-7, 2-13
		(2) Modifying U, K Device memory	4-1, 5-32
		3. Removing contents	
		(1) Removing Appendix 1.11	App-21
V 2.1	'14.06	1. Adding contents	
		(1) Adding _REFRESH_NG_BASE	App-13
V 2.2	'15.07	1.Modifying contents	
		(1) Vibration resistance Specifications	3-1
		1.Modifying contents (1) Rated input voltage modified	8-1
	<i></i>	(2) Circuit configuration modified	9-2, 9-3, 9-4, 9-5
V 2.3	'15.09	(3) Smart Link Model name modified (4) Terminology modified (FG \rightarrow PE)	9-6 8-2, 10-1, 10-2, 11-2, 13-1
		(5) CPU Processing Speed Unit changed (us \rightarrow ns)	4.1
		(6) List of Configuration Products updated	2.1
V 2.4	'16.03	1.Modifying contents (1) Smart Link manual supplemented	9-6
V2.5	'16.09	1. Adding contents (1) Redundancy expansion driver(single mode) updated	1-1, 2-1, 7-7

Version	Data	Main contents	Revised location
V 2.6	'20.05	LSIS to change its corporate name to LS ELECTRIC	Entire

Г

Thank you for purchasing PLC of LS ELECTRIC Co., Ltd.

Before use, make sure to carefully read and understand the User's Manual about the functions, performances, installation and programming of the product you purchased in order for correct use and importantly, let the end user and maintenance administrator to be provided with the User's Manual.

The User's Manual describes the product. If necessary, you may refer to the following description and order accordingly. In addition, you may connect our website (<u>http://www.lselectric.co.kr/</u>) and download the information as a PDF file.

Title	Description
XG5000 User's Manual (for XGK, XGB)	XG5000 software user manual describing online function such as programming, print, monitoring, debugging by using XGK, XGB CPU
XG5000 User's Manual (for XGI, XGR)	XG5000 software user manual describing online function such as programming, print, monitoring, debugging by using XGI, XGR CPU
XGK/XGB Instructions & Programming User's Manual	User's manual for programming to explain how to use instructions that are used PLC system with XGK, XGB CPU.
XGI/XGR/XEC Instructions & Programming User's Manual	User's manual for programming to explain how to use instructions that are used PLC system with XGI, XGR CPU.
XGK CPU User's Manual (XGK-CPUA/CPUE/CPUH/CPUS/CPUU /CPUUN/CPUHN/CPUSN)	User manual describing about XGK CPU module, power module, base, IO module, specification of extension cable and system configuration, EMC standard
XGI CPU User's Manual (XGI-CPUU/CPUH/CPUS/CPUE/CPUU/D CPUUN)	User manual describing about XGI CPU module, power module, base, IO module, specification of extension cable and system configuration, EMC standard
XGR redundant series User's Manual	User manual describing about XGR CPU module, power module, extension drive, base, IO module, specification of extension cable and system configuration, EMC standard

Relevant User's Manuals

Г

◎ TABLE OF CONTENTS ◎

Chapter 1 Overview	1-1~1-8
 1.1 About this User Manual 1.2 Configuration of the XGR Redundant System 1.3 Features of the XGR Redundancy system 1.4 Glossary 	1-3 1-4
Chapter 2 System Configuration	2-1~2-17
2.1 Product List 2.2 Redundancy System 2.2.1 Redundant System Configuration 2.2.2 Redundancy of CPU system 2.2.3 Power Module Redundancy 2.2.4 Extension Drive Redundancy 2.2.5 Extension Base Communication Path Redundancy 2.2.6 Example of Redundant System Configuration 2.3 Network System 2.3.1 Networking among Systems 2.3.2 Remote I/O System	
Chapter 3 General Specifications	3-1
3.1 General Specifications	3-1
Chapter 4 CPU Module	4-1~4-8
 4.1 Performance Specifications	4-3 4-7 4-7 4-7 4-7 4-7
Chapter 5 Program Constitution and Operation Method	5-1~5-33
 5.1 Program Basics	5-1 5-2

5.1.4 Scan Time	5-6
5.2 Program Execution	
5.2.1 Program Type	5-11
5.2.2 Program Execution	
5.2.3 Restart Mode	
5.2.4 Task Program	5-14
5.3 Operation Mode	5-23
5.3.1 Operation Mode	5-23
5.3.2 RUN mode	5-23
5.3.3 Stop Mode	
5.3.4 Debug Mode	
5.3.5 Switching Operation Mode	5-25
5.4 Redundancy System Operation	
5.4.1 Redundancy System Operation	5-27
5.4.2 Start-up of Redundant System	
5.5 Memory	
5.5.1 Program memory	5-31
5.5.2 Data memory	5-32
5.5.3 Data retain area setting	

Γ

Chapter 6 CPU Module Functions 6-1~6-24

6.1 Self-diagnosis Function	
6.1.1 Scan watchdog timer	6-1
6.1.2 I/O Module Check Function	6-3
6.1.3 Battery level check	6-3
6.1.4 Saving error log	6-3
6.1.5 Troubleshooting	6-3
6.2 Clock Function	6-4
6.3 Remote Functions	
6.4 Forced On/Off Function of I/O	6-10
6.4.1 Force I/O Setting	6-10
6.4.2 The point of time of method of forced On/Off process	6-11
6.5 Operation history saving function	
6.5.1 Error history	6-12
6.5.2 Mode change history	6-12
6.5.3 Shut down history	6-12
6.5.4 System history	6-12
6.6 External device failure diagnosis function	6-13
6.7 Redundancy system operation mode	6-14
6.7.1 Operation mode setting	
6.7.2 Data synchronization area setting	6-16
6.8 Setting operation of communication	6-17
6.8.1 Automatic master conversion	
6.8.2 Global status variable	
6.8.3 ONE IP Solution	
6.9 Fault Mask Function	
6.9.1 Applications and operations	6-20
6.9.2 Fault mask setting	6-20
6.9.3 Releasing fault mask	
6.10 I/O Module Skip Function	6-21

 6.10.1 Applications and operations 6.10.2 Setting and processing I/O data 6.10.3 Releasing skip function 6.11 I/O Base Skip Function	
 6.12.1 Module replacement in redundant system 6.12.2 Replacing I/O module in redundant system 6.12.3 Replacing base module in redundant system 	6-23 6-23 6-24
Chapter 7 Extension Drive Module	
7.1 Performance specifications 7.2 Identification and Function	7-2
Chapter 8 Power Module	8-1~8-5
8.1 Type and Specification 8.2 Parts' Names	
8.3 Selection	
8.4 Examples of Current Consumption/Power Calculations	
Chapter 9 IO Module	9-1~9-40
9.1 Cautions for Selecting Modules 9.2 Digital Input Module Specifications	9-1
9.1 Cautions for Selecting Modules	9-1 9-3
 9.1 Cautions for Selecting Modules 9.2 Digital Input Module Specifications 9.2.1 8 point DC24V input module(source/sink type) 9.2.2 16 point DC24V input module(source/sink type) 	9-1 9-3 9-3 9-4
 9.1 Cautions for Selecting Modules 9.2 Digital Input Module Specifications	
 9.1 Cautions for Selecting Modules	
 9.1 Cautions for Selecting Modules 9.2 Digital Input Module Specifications	
 9.1 Cautions for Selecting Modules	
 9.1 Cautions for Selecting Modules	9-1 9-3 9-3 9-4 9-4 9-5 9-5 9-6 9-7 9-7 9-8 9-9
 9.1 Cautions for Selecting Modules	
 9.1 Cautions for Selecting Modules	
 9.1 Cautions for Selecting Modules	
 9.1 Cautions for Selecting Modules	9-1 9-3 9-3 9-4 9-5 9-6 9-7 9-7 9-8 9-9 9-9 9-10 9-11 9-12 9-13
 9.1 Cautions for Selecting Modules	9-1 9-3 9-3 9-4 9-5 9-6 9-7 9-7 9-8 9-9 9-9 9-10 9-11 9-12 9-13 9-13
 9.1 Cautions for Selecting Modules 9.2 Digital Input Module Specifications 9.2.1 8 point DC24V input module(source/sink type) 9.2.2 16 point DC24V input module(source/sink type)	
 9.1 Cautions for Selecting Modules	9-1 9-3 9-3 9-4 9-5 9-6 9-7 9-7 9-8 9-9 9-10 9-10 9-11 9-12 9-13 9-13 9-13 9-14 9-15 9-16
 9.1 Cautions for Selecting Modules	9-1 9-3 9-3 9-4 9-5 9-6 9-7 9-7 9-8 9-9 9-10 9-10 9-11 9-12 9-13 9-13 9-13 9-14 9-15 9-16 9-17
 9.1 Cautions for Selecting Modules	9-1 9-3 9-3 9-4 9-5 9-6 9-7 9-7 9-8 9-9 9-9 9-10 9-11 9-12 9-13 9-13 9-13 9-14 9-15 9-16 9-17 9-18
 9.1 Cautions for Selecting Modules	9-1 9-3 9-3 9-4 9-5 9-5 9-6 9-7 9-7 9-8 9-9 9-10 9-11 9-12 9-13 9-13 9-13 9-13 9-14 9-15 9-16 9-17 9-18 9-19
 9.1 Cautions for Selecting Modules	9-1 9-3 9-3 9-4 9-5 9-6 9-7 9-7 9-8 9-9 9-10 9-10 9-11 9-12 9-13 9-13 9-13 9-13 9-14 9-15 9-16 9-17 9-18 9-19 9-20
 9.1 Cautions for Selecting Modules	9-1 9-3 9-3 9-4 9-5 9-6 9-7 9-7 9-8 9-9 9-10 9-10 9-11 9-12 9-13 9-13 9-13 9-14 9-15 9-16 9-17 9-18 9-19 9-20 9-21

9.3.11 8 point transistor isolated output module(sink type) 9.4 Digital I/O Combined Module Specifications	
9.4.1 32 point(DC input transistor output) I/O combined module	
9.5 Event Input Module	
9.5.1 Event input module	
9.6 Applications of Smart Link	9-26
9.6.1 Modules accessible to Smart Link	
9.6.2 Smart Link Components	
9.6.3 Smart Link Mapping Table	
9.6.4 Smart Link Connection	
9.6.5 Smart Link Connection Diagram.	
9.6.6 Smart Link Specifications & Dimensions	
Chapter 10 Base and Extension Cable	10-1~10-5
10.1 Specifications	
10.1.1 Basic base	
10.1.2 Extension base	
10.1.3 Sync. Cable	
10.1.4 Extension cable	
10.1.5 Connector for extension cable (electrical)	
10.2 Parts and Names	
10.2.1 Basic base	
10.2.1 Basic base 10.2.2 Extension base	
	10-5
10.2.2 Extension base	10-5
10.2.2 Extension base Chapter 11 Installation and Wiring 11.1 Installation	10-5
10.2.2 Extension base Chapter 11 Installation and Wiring 11.1 Installation 11.1.1 Installation environment	
10.2.2 Extension base Chapter 11 Installation and Wiring 11.1 Installation 11.1.1 Installation environment 11.1.2 Cautions for handling	
10.2.2 Extension base Chapter 11 Installation and Wiring 11.1 Installation 11.1.1 Installation environment 11.1.2 Cautions for handling 11.1.3 Attachment/Detachment of modules	
10.2.2 Extension base Chapter 11 Installation and Wiring 11.1 Installation 11.1.1 Installation environment 11.1.2 Cautions for handling 11.1.3 Attachment/Detachment of modules 11.2 Wiring	
10.2.2 Extension base Chapter 11 Installation and Wiring 11.1 Installation 11.1.1 Installation environment 11.1.2 Cautions for handling 11.1.3 Attachment/Detachment of modules 11.2 Wiring 11.2.1 Power wiring	
10.2.2 Extension base Chapter 11 Installation and Wiring 11.1 Installation 11.1.1 Installation environment 11.1.2 Cautions for handling 11.1.3 Attachment/Detachment of modules 11.2 Wiring 11.2.1 Power wiring 11.2.2 I/O Device wiring	
10.2.2 Extension base Chapter 11 Installation and Wiring. 11.1 Installation 11.1.1 Installation environment. 11.1.2 Cautions for handling 11.1.3 Attachment/Detachment of modules 11.2 Wiring 11.2.1 Power wiring 11.2.2 I/O Device wiring 11.2.3 Grounding wiring	
10.2.2 Extension base Chapter 11 Installation and Wiring 11.1 Installation 11.1.1 Installation environment 11.1.2 Cautions for handling 11.1.3 Attachment/Detachment of modules 11.2 Wiring 11.2.1 Power wiring 11.2.2 I/O Device wiring	
10.2.2 Extension base Chapter 11 Installation and Wiring. 11.1 Installation 11.1.1 Installation environment. 11.1.2 Cautions for handling 11.1.3 Attachment/Detachment of modules 11.2 Wiring 11.2.1 Power wiring 11.2.2 I/O Device wiring 11.2.3 Grounding wiring	
10.2.2 Extension base Chapter 11 Installation and Wiring. 11.1 Installation 11.1.1 Installation environment. 11.1.2 Cautions for handling 11.1.3 Attachment/Detachment of modules 11.2 Wiring 11.2.1 Power wiring 11.2.2 I/O Device wiring 11.2.3 Grounding wiring 11.2.4 Specifications of wiring cable	
10.2.2 Extension base Chapter 11 Installation and Wiring 11.1 Installation 11.1.1 Installation environment 11.1.2 Cautions for handling 11.1.3 Attachment/Detachment of modules 11.2.1 Power wiring 11.2.2 I/O Device wiring 11.2.3 Grounding wiring 11.2.4 Specifications of wiring cable	
10.2.2 Extension base Chapter 11 Installation and Wiring	
10.2.2 Extension base Chapter 11 Installation and Wiring. 11.1 Installation 11.1.1 Installation environment. 11.2 Cautions for handling. 11.3 Attachment/Detachment of modules 11.2 Wiring. 11.2.1 Power wiring. 11.2.2 I/O Device wiring. 11.2.3 Grounding wiring. 11.2.4 Specifications of wiring cable. Chapter 12 Maintenance 12.1 Repairs and Maintenance	
10.2.2 Extension base Chapter 11 Installation and Wiring. 11.1 Installation 11.1.1 Installation environment. 11.1.2 Cautions for handling 11.1.3 Attachment/Detachment of modules 11.2 Wiring 11.2.1 Power wiring 11.2.2 I/O Device wiring 11.2.3 Grounding wiring 11.2.4 Specifications of wiring cable Chapter 12 Maintenance 12.1 Repairs and Maintenance 12.2 Routine Inspection	

Γ

13.1 Requirements Complying with EMC Specifications	
13.1.1 EMC specifications	
13.1.2 Panel	
13.1.3 Cable	
13.2 Requirements Complying with Low Voltage Direction	
13.2.1 Specifications applicable to XGT series	
13.2.2 Selection of XGT series PLC	
Chapter 14 Built-in PID Function	
14.1 Features	
14.2 PID Control	
14.3 PID Control Operation	
14.3.1 Terms used	
14.3.2 PID equation	
14.3.3 P control	
14.3.4 PI control	
14.3.5 PID control	
14.4 PID Instruction	
14.4.1 PID loop state	
14.4.2 PID instruction group	
14.5 PID Configuration	
14.5.1 Common bit area	
14.5.2 Individual data operation	
14.6 Convenient Functions of PID Instruction	
14.6.1 Various control method including PID	
14.6.2 Operation and function of Anti Wind-UP	
14.6.3 Operation and function of Auto-tuning	
14.6.4 Operation and function of cascade	
14.7 Directions of PID Instructions	
14.7.1 Hardware configuration	
14.7.2 Program example 1	14-27
14.7.3 PID control	
14.7.4 AT(Auto-tuning) operation	14-35
14.7.5 Program example 2	
14.7.6 Cascade operation	14-37

٦

15.1 Basic Troubleshooting Procedure	15-1
15.2 Troubleshooting	
15.2.1 Action when POWER LED is off	15-3
15.2.2 Action when WAR. (Warning) LED is on	15-4
15.2.3 Action when ERR. LED is on.	15-8
15.2.4 Action when RUN/STOP LED is off	15-9
15.2.5 Acton when I/O module does not work properly	15-10
15.2.6 Action when writing program is not possible	15-12
15.2.7 Action when Sync. cable is not installed properly	15-13
15.2.8 When undesirable master switching occurs	15-14
15.2.9 When newly added CPU does not join redundant operation	15-15

15.2.10 When failing to switch master	15-16
15.2.11 When extension cable is disconnected	15-17
15.2.12 When extension driver gets error	
15.3 Troubleshooting Questionnaires	
15.4 Cases	
15.4.1 Trouble types and measures of input circuit	15-22
15.4.2 Trouble types and measures of output circuit	15-23
15.5 Error Codes List	15-25
15.5.1 Error codes during CPU operation	15-25

Г

Appendix	1 Flags List	App-1	l~App)-18	3
----------	--------------	-------	-------	------	---

Appendix 1.1 User Flag	App-1
Appendix 1.2 System Error Representative Flag	
Appendix 1.3 System Error Detail Flag	
Appendix 1.4 System Warning Representative Flag	
Appendix 1.5 System Warning Detail Flag	App-10
Appendix 1.6 System Operation Status Information Flag	
Appendix 1.7 Redundant Operation Mode Information Flag	
Appendix 1.8 Operation Result Information Flag	App-17
Appendix 1.9 Operation mode Key Status Flag	App-18
Appendix 1.10 Link Flag (L) List.	App-19
Appendix 1.11 Reserved Word	

LSELECTRIC 6

Chapter 1. Overview

Chapter 1. Overview

1.1 About this User Manual

This User Manual describes the performance specifications and operation procedures of the redundancy system including the XGR-CPU, in addition to the configuration of communication system and the use of special module in relation to the redundancy system.

This User Manual provides the basic specifications of the CPU module, power module, I/O module, main/expansion base of redundancy and expansion drive module, which are applied to the basic system of redundancy (XGR).

Classification	Model Name
Redundancy CPU Module	XGR-CPUH/F, XGR-CPUH/T, XGR-CPUH/S
Expansion Drive Module	XGR-DBST, XGR-DBSF(S), XGR-DBSH(S)
Redundancy Power Module	XGR-AC12, XGR-AC22, XGR-AC13, XGR-AC23, XGR-DC42
I/O Module	XGI-aaaa, XGQ-aaaa
Redundancy Basic Base	XGR-M02P, XGR-M06P
Redundancy Expansion Base	XGR-E12P, XGR-E12H
Redundancy Expansion Drive Module	XGR-DBDT, XGR-DBDF(S), XGR-DBDH(S)

For programming, see following manuals in addition to this User Manual;

• XG5000 User Manual (for XGI/XGR)

XGI/XGR Instruction User Manual

For further information on the special and communication modules, see the manuals and technical data pertinent to each special module and communication modules.

User Manuals of the special modules

• User Manuals of the communication modules

This User Manual contains following information.

Chapter	Subject	Description	
Chap. 1	Overview	Describes the configuration, product features, and glossaries.	
Chap. 2	System Configuration	Describes the product types and system configurations available for the XGR series.	
Chap. 3	General Specifications	Provides the common specifications of the modules used in the XGR series.	
Chap. 4	CPU Module Specifications		
Chap. 5	Configuration of program and operation method	Describes the performance, specification, and operation of the XGR-CPUH.	
Chap. 6	CPU Module Functions		
Chap. 7	Expansion driver module		
Chap.8	Power Module	Describes the specifications and use of the I/O module and power module,	
Chap. 9	IO Module	except the CPU module.	
Chap. 10	Base •Expansion Cable		
Chap. 11	Installation and Wiring	Provides the guidelines for installation, wiring and precaution of the PLC system to secure system reliability.	
Chap. 12	Maintenance	Provides the items and methodology of maintenance for PLC system to prevent failure throughout the service life.	
Chap. 13	EMC Compliance	Provides the system construction and configuration in response to the EMC specification.	
Chap. 14	Troubleshooting	Describes various errors and faults which may occur in the system and countermeasures.	
Append. 1	Flag List	Describes the types and contents of various flags.	
Append. 2	Dimensions	Provides the external size of the CPU, I/O module and base.	
Append. 3	GLOFA Compatibility		
Append. 4	Warranty		

Note

1) This User Manual does not describe the special and communication modules and programming. Refer related manuals for the information.

- 2) XGR CPU is a kind of XGT PLC system whose CPU type can be classified as follows;
 ① XGK Series: the XGT PLC systems having the CPU using Master-K language(LS language)
 ② XGI Series: the XGT PLC systems having single CPU using IEC language
 ③ XGR Series: the XGT PLC systems having redundant CPUs using IEC language

Chapter 1. Overview

1.2 Configuration of the XGR Redundant System

XGR Redundancy System provides reliable solution for various types of redundancy systems required in diversified applications. The XGR Redundancy System is economical and user-convenient because the system makes use of the most resources of the XGI system, added with the components for redundancy.

Redundancy 54

- CPU module redundancy
- Power module redundancy
- Ethemet communication module redundancy

Modules for redundancy

- 2 redundant CPUs [optical, electrical] 1
- 5 types of power module [standard, large output] AC110V, AC220V, DC24V individual ~
- ~ Redundant bases [2, 6 slots: 2, 6 communication modules can be installed]
- 3 types of expansion drive modules [per media class: optical, electrical, mixed]
- 1 Expansion base [12 slots: according to consumption current]
- 3 types of redundancy expansion drive modules [per media: Optical, electrical, mixed] Redundancy expansion base [12 slots: according to consumption current] √

CPU Module ι.

- ~ IEC 61131-3 language supported, ladder process rate of 42ns/command, 3MB (Approx. 128kstep) program capacity, 131,072 of I/O points
- 1Gbps optical communication for CPU synchronization
- ~ Built-in I/O communication master
- ~ Provides 2 types of CPU module according to the I/O communication media [optical, electrical]

Redundant system Network ii.

- Expansion drive module
- Topology: ring [bus type operation activated in case of one error]
- ~ Provides optical, electrical, and combined media
- Applied with 100Mbps class industrial Ethernet technology
- ~ Max. available I/O points: 23,808 (31 stations x 12 slots x 64 points)

Programming Tool

- Integrated control of all the all XGT types with XG5000 XGK, XGI, XGB, XGR
- Convenient programming, various motoring function, diagnosis function, edit funtion
- Supports various IEC type languages: LD, ST, SFC, IL[Only view function]
- Supports communication parameter setting, frame monitoring function through XG-PD
- 1 Supported with software packages per functionalities for motion, APM, temperature controller, etc.

1.3 Features of the XGR Redundancy system

XGR Redundancy System provides optimized solutions in various applications with its superb performance and convenience features.

High performance

- CPU process rate: 42ns / command
- ~ High speed backplane
- Large capacity control points: max. 131,072 points ~
- 1 Sufficient program capacity (max. 128ksteps)
- √ Sufficient data memory: 25MB
- ~ Long data type (64bit) and high speed real number operation (single, double) provided
- ~ Switching operation with minimum delay : if the master CPU fails, operation is switched to the backup CPU within 50ms

Minimum size implemented

- Compact panel can be implemented with the minimum size among the class
- ~ CPU module: Width(55 mm) * Height(98 mm) * Depth(90 mm) Power module
 - 1) XGR-AC12/AC22: Width (55 mm) * Height (98 mm) * Depth (90 mm) 2) XGR-AC13/AC23: Width (55 mm) * Height (98 mm) * Depth (110 mm)

Easy expansion using network

- Easy installation of expansion bases using network cable
- ✓ Up to 31 remote bases can be added
- ✓ Software program can be uploaded/downloaded via online access from expansion base
- 1 Communication master module on expansion base enables the installation of smart I/O at anywhere

Improved maintenance maintain ace by system history, network ring configuration, etc.

- Provides system analysis data including the operation, error, and system histories
- Network ring configuration enables normal system operation even when a network cable fails
- ~ Provides network monitoring and protocol monitoring functions
- ~ If communication fails (smart I/O, etc.), the failed channel can be monitored (by monitoring the flag via HMI).
- ✓ Graphic display of system configuration
- Module Changing Wizard enables safe replacement of module during operation
- Base Changing Wizard enables safe replacement of base during operation

٢ IEC 61131-3 (standard language) specification compliance

- Provides IEC standard LD, ST, SFC, IL(only view function)
- Provides IEC standard program structure and data type

Chapter 1. Overview

Supports various communication functions

- Open network enables convenient interface with other products (Ethernet, Profibus, DeviceNet, RS-232C, RS-422/485, etc.)
- Supports various protocols for improved convenience
- Up to 24 communication master modules (12 high speed links, 8 P2Ps) can be mounted on one redundant system.
- Simple and east network diagnosis using network and communication frame monitoring function
- RAPIEnet module can be inserted on basic base

Diverse I/O modules are provided for easy system configuration

- 8, 16, 32, and 64 point modules are provided (8/16 point modules for relay output)
- Single input, single output, mixed I/O module provided

Extended applications with enhanced analog function

- Analog modules can be connected to the slots of all the expansion bases (max. 250 output modules, 139 input modules)
- Supports various applications with insulated type analog and temperature module
- Convenient use by special parameter settings and flags
- Strengthened debugging function by monitoring flags and data and changing the setting value through special monitor display window

Provides integrated programming & engineering environments

- Integrated control of all the all XGT types with XG5000 XGK, XGI, XGB, XGR
- 1 Convenient programming, various motoring function, diagnosis function, edit funtion
- Supports various [EC type languages: LD, ST, SFC, LI[Only view function] Supports communication parameter setting, frame monitoring function through XG-PD
- Supported with software packages per functionalities for motion, APM, temperature controller, etc.

Provides diversified additional function

- Battery backup and flash memory backup for software programs
- Various restart mode(warm, cold)
- Task program process
- ~ Forced ON/OFF of I/O
- Clock
- 1 Module changing wizard available during operation
- Fault mask function
- √ Module skip function
- Extensive operation history supported (system history)
- ~ Detail error report supported (error history)
- LED indication of operation status
- ~ Dot matrix indicator: display operation information and abnormal matters in texts.

PID Function

- Max. 256 loops supported
- Parameter setting using XG5000, convenient monitoring on loop status through Trend monitor
- Easy control parameter setting using improved auto-tuning function Provides various control modes including normal/reverse combination operation, 2 step SV PID control, cascade control. etc.
- Safety secured by diversified alarm functions including PV MAX, PV change, etc.

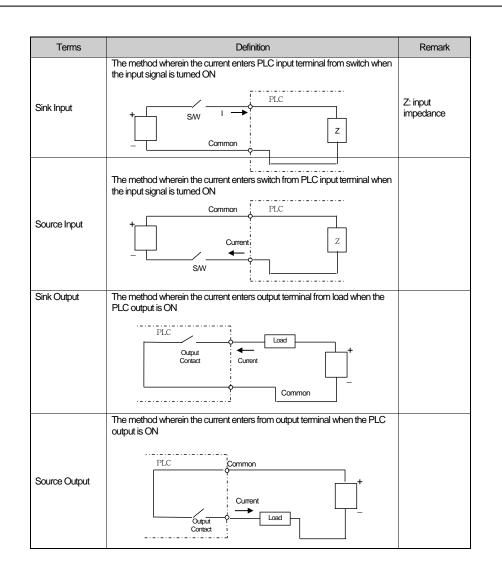
1.4 Glossary

ſ

I

This section provides the major terms and their definitions, used in this Manual.

Terms	Definition	Remark	
Module	A standardized component having a specific function to constitute a system. E.g., I/O board designed to be inserted into base.	CPU module, power module, I/O module, etc.	
Master CPU Module	The CPU module running the present software program. Automatically switched to backup CPU module when the operation is stopped and transfers the control		
Standby CPU Module	The control function of the master CPU module is transferred to this standby CPU module in case of failure, and this standby CPU module becomes the master CPU module.		
Redundant Basic Base	This base can accommodate the CPU module and Ethernet communication module. •Master CPU system: the redundant basic system whose CPU module is operating as the master. •Standby CPU system: the redundant basic base whose CPU module is operating as backup mode.		
Redundant Expansion Base	Expansion base where power module, I/O module, and special/communication module can be installed. (The communication module can be any module except the <u>EtherNet/IP</u> , FEnet and RAPIEnet).		서식 있음: 글꼴: (영어) Arial, (한글) 굴림체 pt
Expansion Drive Module	The module for communication between bases. It also enables setting the base numbers (1~31) with a rotary switch		
Synchronous cable	1Gbps optical cable for connection between the CPU modules of a redundant system		
CPU redundancy	As a part of redundant system, the system is constructed to enable continuous operation when the master CPU module fails using a backup CPU module		
Power redundancy	A system constructed with redundant power modules to enable continuous system operation when a module of the base fails		
Unit	A module or a set of module which is the minimum unit of a PLC system operation. A PLC system comprises units and/or sets of units	Basic unit. Expansion unit	
PLC System	A system consists of PLC and peripheral devices and can be controlled with user software program		
XG5000	A programming tool for developing software program, editing and debugging		
Module Changing Wizard	A software used for the replacement of CPU module during PLC operation. Power module, I/O module, some of the special modules, and base module can be replaced with this software	Replaceable special modules: A/D,D/A, HSC,RTD	


LSELECTRIC 1-6

축소: 0.2

Chapter 1. Overview

Terms	Definition	Remark
Cold Restart	Starting a PLC system and user program after initializing all data (variables and programs such as I/O image area, internal register, timer, counter, etc.) automatically or manually	
Warm Restart	Along with the function that notifies user-program about power OFF incidents, the user programs are restarted with holding previous data according to setting, after a power OFF.	
I/O Image Area	The internal memory area of the CPU module installed to maintain I/O status	
Cnet	Computer Network	
FEnet	Fast Ethemet Network	
Pnet	Profibus-DP Network	
Dnet	DeviceNet Network	
Rnet	Remote Network	
RTC	Real Time Clock. The generic IC with a built-in clock function	
Watchdog Timer	The timer which monitors the preset running time of a user program, and triggers alarm if the process fails to be completed within preset time	
Function	The operation units which do not store the operation result in the instructions, such as the 4 arithmetical and comparison operations, and output the results of the inputs immediately	
Function Block	The operation units which store the operation results in the instruction, such as timer and counter, and use the results over multiple scans	
Direct Variable	The variables used without declaring name and type. For example, I, Q, and M areas are direct variables.	%IX0.0.2 %QW1.2.1 %MD1234, etc.
Automatic Symbolic Variable	The variables used with names and type declared by user. - if declared as'INPUT_0'=%IX0.0.2, 'RESULT'=%MD1234, 'INPUT_0' and 'RESULT' names can be used in the program instead of %IX0.0.2 and %MD1234.	
Task	The condition for a program start-up, such as fixed cycle task, internal contact point task, and initialization task	

Chapter 1. Overview

1

LSELECTRIC 1-8

Chapter 2. System Configuration

The XGR Series offer various products for basic systems, computer communication and network systems. This Chapter describes the configuration method and features of each system.

2.1 Product List

The product line of the XGR Series is as follows.

(1) Products exclusive for redundancy

Product	Model	Description
	XGR-CPUH/F	 Max. I/O points: 23,808, program capacity: 3MByte (including UPLOAD) For optical communication (multi mode, max. distance: 2km)
Redundancy CPU Module	XGR-CPUH/S	 Max. I/O points: 23,808, program capacity: 3MByte (including UPLOAD) For optical communication (single mode, max. distance: 15km)
	XGR-CPUH/T	Max. I/O points: 23,808, program capacity: 3MByte (including UPLOAD) For electrical communication
Redundancy Basic	XGR-M02P	 For mounting redundancy CPU module, power redundancy Available for 2 communication modules
Base	XGR-M06P	 For mounting redundancy CPU module, power redundancy Available for 6 communication modules
Redundancy Expansion	XGR-E12P	 For mounting I/O module, power redundancy Available for 12 I/O modules
Base	XGR-E08P	 For mounting I/O module, power redundancy Available for 8 I/O modules
Redundancy Expansion Driver Base	XGR-E12H	 For mounting I/O module, power redundancy Extension drive module redundancy Available for 12 I/O modules
	XGR-DBST	 Communication module for XGR expansion base operation. Electrical media
	XGR-DBSF	 Communication module for XGR expansion base operation. Optical media (multi mode, max. distance: 2km)
Expansion Drive Module	XGR-DBSH	 Communication module for XGR expansion base operation. Electrical/optical media mixing (multi mode, max. distance: 2km)
	XGR-DBSFS	 Communication module for XGR expansion base operation. Optical media (single mode, max. distance: 15km)
	XGR-DBSHS	 Communication module for XGR expansion base operation. Electrical/optical media mixing (single mode, max. distance: 15km)
	XGR-DBDT	 Communication module for XGR expansion drive redundancy base operation. Electrical media
	XGR-DBDF	 Communication module for XGR expansion drive redundancy base operation. Optical media (multi mode, max. distance: 2km)
Expansion Drive Redundancy Module	XGR-DBDH	 Communication module for XGR expansion drive redundancy base operation. Electrical/optical media mixing (multi mode, max. distance: 2km)
	XGR-DBDFS	 Communication module for XGR expansion drive redundancy base operation. Optical media (single mode, max. distance: 15km)
	XGR-DBDHS	 Communication module for XGR expansion drive redundancy base operation. Electrical/optical media mixing (single mode, max. distance: 15km)

Product	Model	Description
Power Module	XGR-AC12	• DC5V: 5.5A, AC110V input
	XGR-AC22	• DC5V: 5.5A, AC220V input
	XGR-AC13	• DC5V: 8.5A, AC110V input
	XGR-AC23	• DC5V: 8.5A, AC220V input
	XGR-DC42	DC5V: 7.5A, DC24V input
Sync. Cable	XGC-F201 XGC-F301 XGC-F501	 LC type optical cable (multi core), length: 2 m LC type optical cable (multi core), length: 3 m LC type optical cable (multi core), length: 5 m
Dustproof module	XGR-DMMA	 dustproof module for not used power module slot

Г

(2) Common Products for XGT Series

(a) Digital I/O Module

Product	Model	Description
	XGI-D21A	DC 24V input, 8 points (current source / sink input)
	XGI-D21D	DC 24V Diagnostic Input, 8 point (Current sink input)
	XGI-D22A	DC 24V input, 16 points (current source / sink input)
	XGI-D24A	DC 24V input, 32 points (current source / sink input)
	XGI-D28A	DC 24V input, 64 points (current source / sink input)
Digital Input Module	XGI-D22B	DC 24V input, 16 points (current source input)
	XGI-D24B	DC 24V input, 32 points (current source input)
	XGI-D28B	DC 24V input, 64 points (current source input)
	XGI-A12A	AC 110V input, 16 points
	XGI-A21A	AC 220V input, 8 points
	XGI-A21C	AC 220V isolated input, 8 points
	XGQ-RY1A	Relay output, 8 points (2A, single COM.)
	XGQ-RY1D	Diagnostic Relay output, 8 point (for 2A, single COM.)
	XGQ-RY2A	Relay output, 16 points (2A)
	XGQ-RY2B	Relay output, 16 points (2A), Varistor incorporated.
	XGQ-TR2A	Transistor output, 16 points (0.5A, sink output)
	XGQ-TR4A	Transistor output, 32 points (0.1A, sink output)
Digital Output Module	XGQ-TR8A	Transistor output, 64 points (0.1A, sink output)
	XGQ-TR2B	Transistor output 16 points (0.5A, source output)
	XGQ-TR4B	Transistor output 32 points (0.1A, source output)
	XGQ-TR8B	Transistor output 64 points (0.1A, source output)
	XGQ-SS2A	Triac output, 16 points (1A)
	XGQ-TR1C	Transistor isolated output, 8 points (2A)
Digital I/O Mixed Module	XGH-DT4A	 DC 24V input, 16 points(current source / sink input) Transistor output, 16 points (0.1A, sink output)
Anti-vibration Module	XGT-DMMA	Anti-vibration module for unused slots

(b) Process and Motion Control Modules

Γ

Product	Model	Description	Remarks
	XGF-AV8A	 Voltage Input: 8 channel DC 1 ~ 5V / 0 ~ 5V / 0 ~ 10V / -10 ~ +10V 	-
	XGF-AC8A	Current Input: 8 channel DC 4 ~ 20mA / 0 ~ 20mA	-
	XGF-AD08A	Voltage/Current Input: 8 channels	-
Analog input Module	XGF-AD4S	 Voltage/Current Input: 4 channels Insulation between channels 	-
	XGF-AD16A	Voltage/Current Input: 16 channels	-
	XGF-AW4S	 2-wire voltage/current input: 4 –channel, insulation between channels 2-wire transmitter driver power supported 	-
	XGF-DV4A	 Voltage Output: 4 channels DC 1 ~ 5V / 0 ~ 5V / 0 ~ 10V / -10 ~ +10V 	-
	XGF-DC4A	 Current Output:: 4 channels DC 4 ~ 20mA / 0 ~ 20mA 	-
Analog output	XGF-DV4S	Current Output:: 4 channels Insulation between channels	-
Module	XGF-DC4S	Current Output:: 4 channelsInsulation between channels	-
	XGF-DV8A	 Voltage Output: 8 channels DC 1 ~ 5V / 0 ~ 5V / 0 ~ 10V / -10 ~ +10V 	-
	XGF-DC8A	 Current Output:: 8 channels DC 4 ~ 20mA / 0 ~ 20mA 	-
Analog I/O Module	XGF-AH6A	 Voltage/Current input 4 channels Voltage/Current output 2 channels 	-
HART I/F Analog Input Module	XGF-AC4H	 Current Input : 4 channel HART I/F, DC 4 ~ 20mA 	-
HART I/F Analog Output Module	XGF-DC4H	 Current Output : 4 channel HART I/F, DC 4 ~ 20mA 	-
Thermocouple Input Module	XGF-TC4S	 Temperature (T/C) Input, 4 channels, Insulation between channels 	-
	XGF-RD4A	Temperature (RTD) Input, 4 channels	-
RTD Input Module	XGF-RD4S	Temperature (RTD) Input, 4 channelsInsulation between channels	-
	XGF-RD8A	Temperature (RTD) Input, 8 channels	-
Temp. control	XGF-TC4UD	 Control loop : 4 loops Input(4 channels, TC/RTD/voltage/current), Output(8 channels, TR/current) 	-
Module	XGF-TC4RT	 Control loop: 4 loops input (4 channels, RTD), Output (8 channels, TR) 	-
	XGF-HO2A	Voltage Input type (Open Collector type) 200kHz, 2 channel	-
High speed Counter Module	XGF-HD2A	 Differential Input type (Line Driver type) 500kHz, 2 channel 	-
MOdule	XGF-HO8A	 Voltage Input type (Open Collector type) 200kHz, 8 channel 	-

Product	Model	Description	Remarks
	XGF-PO3A	 Pulse output (Open Collector type), 3 axes 	-
	XGF-PO2A	Pulse output (Open Collector type), 2 axes	-
	XGF-PO1A	Pulse output (Open Collector type), 1 axis	-
	XGF-PD3A	Pulse output (Line Drive type), 3 axes	-
	XGF-PD2A	 Pulse output (Line Drive type), 2 axes 	-
	XGF-PD1A	Pulse output (Line Drive type), 1 axis	-
	XGF-PO4H	 Pulse output (Open Collector type), 4 axes 	-
Positioning	XGF-PO3H	Pulse output (Open Collector type), 3 axes	-
Module	XGF-PO2H	 Pulse output (Open Collector type), 2 axes 	-
	XGF-PO1H	Pulse output (Open Collector type), 1 axes	-
	XGF-PD4H	 Pulse output (Line Drive type), 4 axes 	-
	XGF-PD3H	Pulse output (Line Drive type), 3 axes	-
	XGF-PD2H	 Pulse output (Line Drive type), 2 axes 	-
	XGF-PD1H	Pulse output (Line Drive type), 1 axes	-
	XGF-PN8A	 Network type(EtherCat), 8 axes, LS dedicated type 	-
	XGF-PN8B	Network type(EtherCat), 8 axes, Standard type	-
Motion Control	XGF-M16M	Motion dedicated net (M-II) type, 16 axes	-
Module	XGF-M32E	Motion dedicated net (EtherCAT) type, 32 axes	-
Event Input Module	XGF-SOEA	DC 24V input, 32 point, Sequence of Event module	-
Data Log Module	XGF-DL16A	 USB 2.0, CF2001, Max 16GB 32 points (Input: 22 points , Output : 10 points) 	-

1

Note

Recommendations of selecting USB Cable (To avoid disconnection with XG5000)

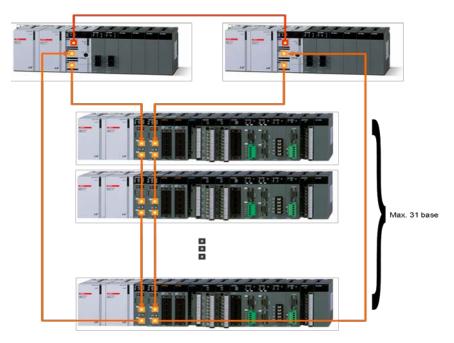
1. Recommend that the company's USB Cable(USB-301A) which is shielded and shorter than 3m.

2. Recommend using USB Hub when connecting up to the PC poor at Noise.

(c) Communication	Modules

Γ

Product	Model	Description	Remarks	
	XGL-EFMF	 Fast Ethernet(optical), Master 100/10 Mbps support 	-	
FEnet Module		Fast Ethernet(electrical), Master		
(Optical/Elec.)	XGL-EFMT	100/10 Mbps support	-	
	XGL-ESHF	Fast Ethernet Switch module(optical)	-	
	XGL-EH5T	Fast Ethernet Switch module(electrical)	-	
	XGL-EIMT	 Communication Module between PLCs (electrical) 100 Mbps Industrial Ethernet supported 	-	
	XGL-EIMF	Communication Module between PLCs (optical)		
		100 Mbps Industrial Ethernet supported	-	
RAPIEnet	XGL-EIMH	 Communication Module between PLCs (electrical / optical) 100 Mbps Industrial Ethernet supported 	-	
		Communication Module between PLCs (electrical)		
	XGL-ES4T	100 Mbps Industrial Ethernet supported	-	
		RAPIEnet Switch		
	XGL-C22A	Serial communication		
		RS-232C, 2 channel		
Cnet Module	XGL-C42A	Serial communication	-	
		• RS-422(485), 2 channel		
	XGL-CH2A	 Serial communication RS-232C 1 channel / RS-422(485) 1 channel 		
	XGL-EDMF	Dedicated Ethernet(optical), Master	-	
		Deterministic communication support		
FDEnet		100/10 Mbps support		
Module(Master)	XGL-EDMT	 Dedicated Ethernet(electrical), Master 		
		Deterministic communication support		
		• 100/10 Mbps support		
	XGL-RMEA	for Rnet Master I/F (Smart I/O communication available) Fact reappage appendix uppert/against the switching East		
Rnet Module		 Fast response speed support(against the existing Fnet module) 	_	
		• 1 Mbps base band		
		• for twisted cable		
Profibus-DP	XGL-PMEA	Profibus-DP Master module	-	
Module Pnet Slave I/F	XGL-PMEC			
module	XGL-PSEA	Profibus-DP Slave module	-	
DeviceNet Module	XGL-DMEA	DeviceNet Master module	-	
Ethernet/IP	XGL-EIPT	□ EtherNet/IP(electric)	_	
Module		100/10 Mbps support		
BACnet/IP I/F	XGL-BIPT	□ BACNet/IP(electric)	_	
Module		100/10 Mbps support		
Fnet I/F module	XGL-FMEA	Field Bus master module	-	


Note

For the active coupler, optical converter, repeater and block type remote module, see the network related technical documents.

2.2 Redundancy System

2.2.1 Redundant System Configuration

The configuration of the basic system incorporating the redundant basic base and expansion bases connected with cables are shown below.

Classification	Description		
Basic base configuration	Constructed with 2 basic bases of the same structure.		
Extension base configuration	Constructed with 2 extension drive module of the same station number		
Max. extendable stacks • Expansion bases can be installed up to 31 stacks.			
Max. I/O modules	• Up to 372 I/O modules can be installed in expansion bases.		
 Max. I/O points 16-point modules: 5,952 points 32-point modules: 11,904 points 64-point modules: 23,808 points 			
Max. expansion distance	 Between bases Optical multi mode: 2 km Optical single mode: 15km Electrical: 100 m Total max length Optical multi mode: 62km (when installing 31 expansion modules) Optical single mode: 465km (when installing 31 expansion modules) Electrical: 3.1km (when installing 31 expansion modules) 		

Classification	Description					
I/O number allocation for expansion bases	 The beginning value of the I/O numbers of each base is determined by the base number setup in the expansion drive module. In the base, the I/O numbers are allocated by 64 (fixed) points per slot. Each slot is allocated with 64 points regardless of the installation and type of module. Different from the digital I/O modules, special modules do not use I/O number for control. They use U device and exclusive function block. An exemplary allocation of I/O numbers of a 12 slot base is shown below. 					
I/O number of basic base	 Since communication module only can be installed on the basic base, I/O numbering is meaningless. Though the basic base does not use the I/O number, the same numbers (768 points) as that of a 12 lot expansion base are allocated. The basic base has the base No. of "0" located at the first digit of the I/O No. 					

Note

Г

(1)The redundant basic base has a fixed base No. of 0. Expansion bases are provided with switches for setting up base No.

- (2) The base modules installed with redundant CPU are available for the basic base only.
- (3) The redundant CPU is a CPU module which occupies 2 slots.

(4) The type of module setup with I/O parameter must agree with that of the actual module to enable operation to start.

(5) In the XGR system, the extension network cable (between main base and extension base, between extension base and extension base) and the sync cable (optical) between the CPU modules must use a single cable. If you use hubs, switches, opto-electric converters, etc. in the XGR system, the system may malfunction.

2.2.2 Module selection when configuring basic system

When configuring basic system, you must consider about size of each module's Data Refresh area.

Data Refresh area is used for data transmission between CPU and modules in XGR CPU system. Data Refresh area is allocated to CPU memory, irrespective of module's operation. You must consider about maximum size of Data

Refresh area. If it exceeds 5120 words(Input Data), 3072 words(Output Data), system doesn't operate properly.

	(Unit : WOR				
Item	Туре	Refresh Size	Item	Туре	Refresh Size
	XGI-A12A	1		XGQ-RY1A	1
	XGI-A21A	1		XGQ-RY2A	1
	XGI-A21C	1		XGQ-RY2B	1
Digital input module	XGI-D21A	1	Digital output module	XGQ-SS2A	1
	XGI-D22A/B	1		XGQ-TR1C	1
	XGI-D24A/B	2		XGQ-TR2A/B	2
	XGI-D28A/B	4		XGQ-TR4A/B	4
Digital I/O module	XGH-DT4A	2		XGQ-TR8A/B	8
	XGF-AC8A	22		XGF-RD4A	30
	XGF-AV8A	22	Temperature detector	XGF-RD4S	30
	XGF-AD8A	22	input module	XGF-TC4S	30
Analog input module	XGF-AD16A	21		XGF-RD8A	23
	XGF-AD4S	12	Temperature control	XGF-TC4RT	31
	XGF-AW4S	12	module	XGF-TC4UD	31
	XGF-AC4H	11	Lish speed souther	XGF-HO2A	25
	XGF-DC8A	11	High speed counter module	XGF-HD2A	25
	XGF-DV8A	11		XGF-HO8A	25
Analog output	XGF-DC4A	11	SOE module	XGF-SOEA	2
module	XGF-DV4A	11	Data log module	XGF-DL16A	32
	XGF-DC4S	11	Communication module	XGL-EFMT	16
	XGF-DV4S	11		XGL-EFMF	16
	XGF-DC4H	7		XGL-ESHF	16
Analog I/O module	XGF-AH6A	11		XGL-DMEA	16
	XGF-PO1A	2		XGL-PSEA	16
	XGF-PO2A	2		XGL-PMEA	16
	XGF-PO3A	2		XGL-PMEC	16
APM module	XGF-PD1A	2		XGL-EDMT	16
(Advanced Position module)	XGF-PD2A	2		XGL-EDMF	16
, ,	XGF-PD3A	2		XGL-EDST	16
	XGF-PO1H	2		XGL-EDSF	16
	XGF-PO2H	2		XGL-RMEA	16

(1) Size of each module's Data Refresh area

ltem	Туре	Refresh Size	ltem	Туре	Refresh Size
	XGF-PO3H	2		XGL-FMEA	16
	XGF-PO4H	2		XGL-C22A	16
	XGF-PD1H	2		XGL-C42A	16
	XGF-PD2H	2		XGL-CH2A	16
APM module (Advanced Position	XGF-PD3H	2	Communication module	XGL-EIMT	16
module)	XGF-PD4H	2	Communication module	XGL-EIMH	16
	XGF-PN8A	3		XGL-EIMF	16
	XGF-PN8B	3		XGL-ES4T	16
	XGF-M16M	1		XGL-BBM	16
	XGF-M32E	4		XGL-EIPT	16

(2) Calculation of Data Refresh area's size

1) Limit of Data Refresh area's size

Sum of Data Refresh area's size installed in system (Input module)	≤	5,120 WORD
Sum of Data Refresh area's size installed in system (Output module)	≤	3,072 WORD

2) Example

Г

In a system, below modules are installed. (Input module) XGI-D28A(20 EA), XGF-DC8A(40EA), XGF-AC8A(20EA), XGF-RD4A(10EA)

\rightarrow Input module data refresh : (4 * 20) + (22 * 20) + (30 * 10) = 820	WORD	≤	5,120 WORD
\rightarrow Output module data refresh : (11 * 40) = 440	WORD	≤	3,072 WORD

Note

 Sum of Input module Data Refresh area's size must not exceed 5,120 WORD. Sum of Output module Data Refresh area's size must not exceed 3,072 WORD.

2) If size of Data Refresh area exceeds the range, XGK/I system doesn't operate properly.

2.2.3 Redundancy of CPU system

A redundant system has the redundancy of power supply modules, CPU modules, basic base modules, and communication modules. On the basic base module of a redundant system, two identical power, CPU, and communication modules are installed. The two CPU modules are connected with a sink cable.

One of the two CPU systems functions as the master which is in charge of the operation and the other is the backup system which takes over the operation when the master system fails.

After correcting the failure, the previous master system can participate in the redundant operation as a backup system. Master and backup systems can be selected using software tool and key switch during redundant operation.

Use the switch on the CPU module to setup CPU-A and CPU-B. If the setting is duplicated with A or B, normal redundant operation cannot be achieved.

CPU-A	Power Module	Power Module	CPU Module	Slot 0	Slot 1	Slot 2	Slot 3	Slot 4	Slot 5
CPU-B	Power Module	Power Module	CPU Module	Slot 0	Slot 1	Slot 2	Slot 3	Slot 4	Slot 5

[Fig. 2.3.2] Slot configuration of duplicated basic base

The modules which can be installed on the basic base are as follows.

Mod	dules	Type/Model			
Main base	CPU Module	XGR-CPUH/T, XGR-CPUH/F			
	Power Module	XGR-AC12, XGR-AC22, XGR-AC13, XGR-AC23			
	Communication	EtherNet/IP I/F module, FEnet I/F module, RAPIEnet I/F module,			
	Module	Cnet I/F module ^{*1)}			
	Base	XGR-M02P ^{*2)} , XGR-M06P			
Expansion	Digital I/O	All types of digital I/O			
base	Analog I/O	All types of analog I/O			
	Communication	Pnet/Rnet/Dnet/Cnet I/F module			
	Module				
	*1) XGR CPU module V1.8 or above is needed.				
*1) XGR-M02P b	base is supported at	XG5000 V3.6 or above			

Note

- (1) Redundant CPU cannot be installed on an expansion base module.
- (2) The O/S version of the two CPUs must be the same.

(3) As shown in [Fig. 2.3.2], the modules on CPU-A: 0, 1, 2, 3, 4, 5 slots and CPU-B: 0, 1, 2, 3, 4, 5 slots must be of the same product type. If the CPU-A: 0 slot is installed with an XGL-EFMF(FEnet) module, the same module must be installed on the CPU-B: 0 slot.

2.2.4 Power Module Redundancy

The power modules of the basic and expansion base systems can have a redundancy.

The redundant power module enables continuous system operation without interruption when one of the two power modules fails to supply power.

Power system or power module failure can be repaired or the module can be replaced during operation without interruption.

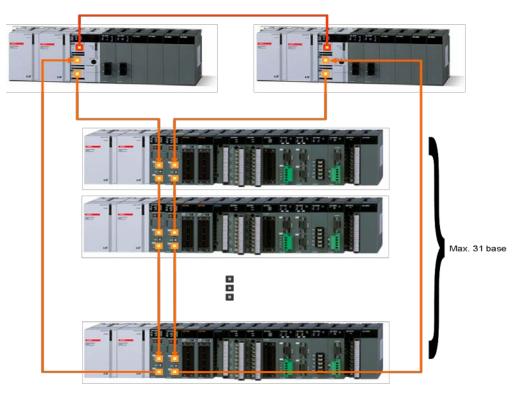
2.2.5 Extension Drive Redundancy

Extension redundancy system consists of power module, extension drive module, redundancy extension base, redundancy cable. All modules except extension base modules are backed up by redundancy. One extension driver operates as master system and another operation as standby which gets the right when error occurs at master system. Master extension driver recovered from error gets stand-by and doesn't participate in an operation. When changing extension drive module during RUN mode, use "Base Skip". Extension redundancy drive modules in the same extension base should have same station number. Extension

redundancy drive module has to be mounted on the designated position of extension base

Master-standby status of extension driver is determined by operating status of CPU.

2.2.6 Expansion Base Communication Path Redundancy

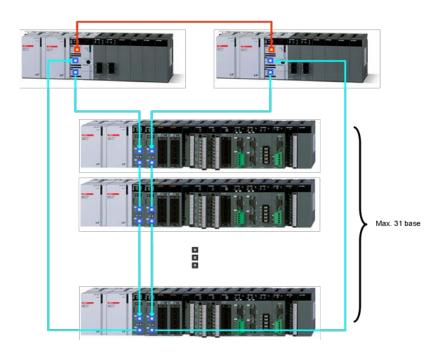

Since the cable connection of the expansion bases are ring-structured, the system can be operated without interruption even when a cable fails, by using the other cable.

In normal ring operation mode, operation is performed using the path which is nearer to the master. When a cable fails, the system operation is maintained by line operation mode.

The failed cable can be replaced without interrupting the operation.

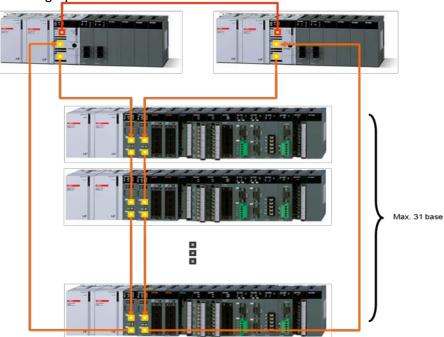
(1) Ring Operation Mode

Dual ring method


Note

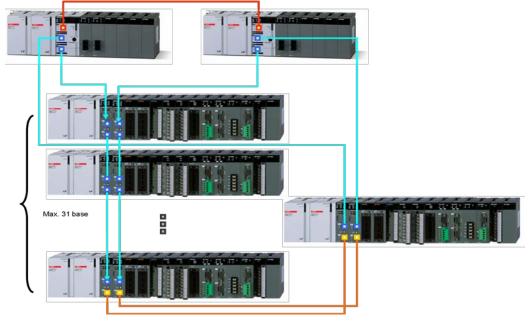
- (1) Extension base system can be configured by dual ring method.
- (2) Diverse configuration is available but there is some limit. Refer to application note.
- (3) O/S version of both extension drivers should be same.
- (4) Switching of extension driver is same as that of CPU.
- (5) If there is error in extension base modules (digital/analog I/O, communication module in extension base), those are not backed up by redundancy.
- (6) You can use only one extension driver. But at this time, extension driver is not backed up by redundancy.
- (7) All extension drivers in the system need not be same.

2.2.7 Example of Redundant System Configuration


(1) Example of using electrical modules

Γ

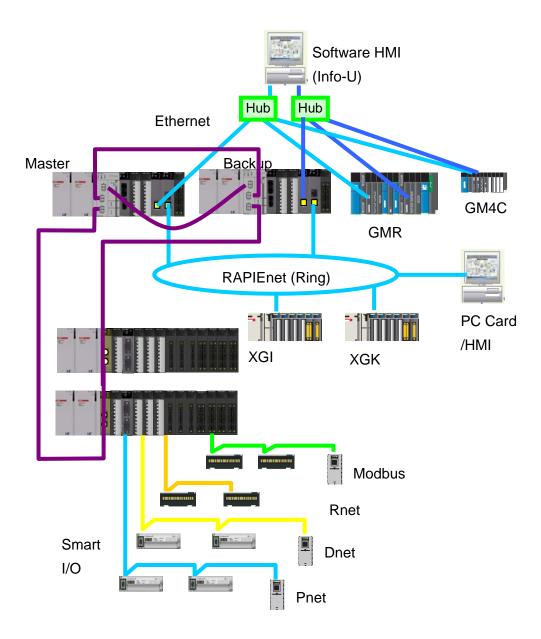
(a) CPU-A module, CPU-B module: XGR-CPUH/T (b) Ext. drive modules of base 1,2,3: XGR-DBDT


(2) Example of using optical modules

(a) CPU-A module, CPU-B module: XGR-CPUH/F (b) Ext. drive modules of base 1,2,3: XGR-DBDF

(3) Example using mixed modules

In a system that electrical modules are already established where distance among the stations is too far or electrical noise is severe, the section can be replaced with optical modules to build an optical/electrical mixed module network without an additional converter.



- (a) CPU-A module, CPU-B module: XGR-CPUH/T
- (b) Ext. drive modules of base 1,2,3: XGR-DBDT
- (c) Ext. drive modules of base 1,2,3: XGR-DBDH

(4) Example of using dedicated Ethernet for upper level HMI connection and between PLCs (Single ring)

Γ

The communication network between upper level systems, existing PLCs and the controllers from other suppliers can be constructed using an Ethernet communication module (FEnet). With XGT PLCs, a high speed and reliable system can be built using an industrial Ethernet module (RAPIEnet).

2.3 Network System

XGR Series support diversified network systems for flexible system configuration methodology.

For the communication between PLCs and upper level systems or between PLCs, Ethernet (EthNet/IP, FEnet, RAPIEnet) and Cnet are provided. For lower control network system, Profibus-DP, DeviceNet, and Rnet are provided.

2.3.1 Networking among Systems

Only EthNet/IP, FEnet and RAPIEnet communication modules are available for the redundant basic base. All communication modules except Ethernet communication module can be installed in the expansion base. Maximum 24 communication modules can be installed in the redundant basic base and expansion bases. Maximum number of modules limited by functionality are as follows;

Functionality	Maximum No. of Modules
Max. No. of modules for high speed link configuration	12
Max. No. of P2P ¹⁾ service modules	8
Max. No. of dedicated service (slave) modules	24

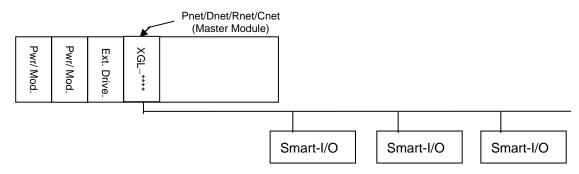
*Note¹⁾ : P2Pservice: 1 to 1 communication

2.3.2 Remote I/O System

For the control network systems of the I/O modules distributed across remote locations, Profibus-DP, DeviceNet, Rnet, Cnet, etc., are provided.

(1) I/O System Application by Network Type

Remote I/O modules are classified into base board type and block type (Smart I/O, etc.). Base board type may not be supported in certain network types.


No.	Network Type (Master)		
1	Profibus-DP	О	О
2	DeviceNet	0	0
3	Rnet	0	0
4	Cnet(MODBUS)	О	-

* The above specifications can be changed for functional improvement. Please refer to the technical material of the network system for detail information.

(2) Block-type Remote I/O System

(a) System Configuration

Constructed with Profibus-DP, DeviceNet, Rnet and Cnet. Block-type remote I/O can be used regardless of the PLC series in the system. Profibus-DP and DeviceNet are developed in compliance with the international standard, therefore, they can be connected with other suppliers' products as well as our own.

(b) I/O Allocation and I/O Numbering Scheme

1) available to allocate variable to remote IO by High Speed Link parameter

2) I, Q, M area of master can be designated as READ/WRITE area for the remote I/O area.

3) For smooth use of forced I/O setting function, it is recommended to use 'I' and 'Q' areas.

4) For the setting method of the high speed link parameters of module, see the technical documents of the network system.

Note

(1) Remote station numbers and areas must be set-up without overlapping.

- (2) Input and output services, such as forced On/Off, are provided only when the inputs and outputs are allocated with I/O variables (%IW,%QW).
- (3) For SMART IO connected to master module, in case you set Read area(Q) and Save area(I) through XG-PD, forced I/O setting is available.

Chapter 3 General Specifications

3.1 General Specifications

Table 3.1 shows the general specifications of XGT series.

			[Table	e 3.1] General specif	ications			
No.	Items			Specifications	5		Related standards	
1	Ambient temperature							
2	Storage temperature		-25~+70 ℃					
3	Ambient humidity			5 ~ 95%RH (Non-con	densing)			
4	Storage humidity		4	5 ~ 95%RH (Non-con	densing)			
			Occa	asional vibration		-		
		Frequency		Acceleration	Amplitude	times		
		5≤f<8.4Hz		_	3.5mm			
5	Vibration	8.4≤f≤150Hz		9.8m/s²(1G)	_	10 times each		
5	resistance		Conti	nuous vibration	- directions	IEC61131-2		
		Frequency		Acceleration	Amplitude	(X, Y and Z)		
		5≤f<8.4Hz		_	1.75mm			
		8.4≤f≤150Hz		4.9m/s ² (0.5G)	_			
	Shock	 Peak acceleration: 14 	Peak acceleration: 147 m/s ² (15G)					
6	resistance	 Duration: 11ms 					IEC61131-2	
		• Half-sine, 3 times eac	n direction pe	er each axis				
		Square wave Impulse noise			±1,500 V		LS ELECTRIC standard	
		Electrostatic			4kV		IEC61131-2	
		discharge Radiated					IEC61000-1-2	
7	Noise resistance	electromagnetic		IEC61131-2, IEC61000-1-3				
		field noise		1			IEC01000-1-3	
		Fast transient/bust	Segme	Power supply	Digital/analo	og input/output	IEC61131-2	
		noise	nt	module		ation interface	IEC61000-1-4	
			Voltage	2kV		kV		
8	Environment	Free from corrosive gasses and excessive dust						
9	Altitude	Up to 2,000 ms						
10	Pollution	2 or less						
	degree							
11	Cooling			Air-cooling				

Note

1) IEC (International Electrotechnical Commission):

An international nongovernmental organization which promotes internationally cooperated standardization in

electric/electronic field, publishes international standards and manages applicable estimation system related with.

2) Pollution degree:

An index indicating pollution degree of the operating environment which decides insulation performance of the devices. For instance, Pollution degree 2 indicates the state generally that only non-conductive pollution occurs. However, this state contains temporary conduction due to dew produced.

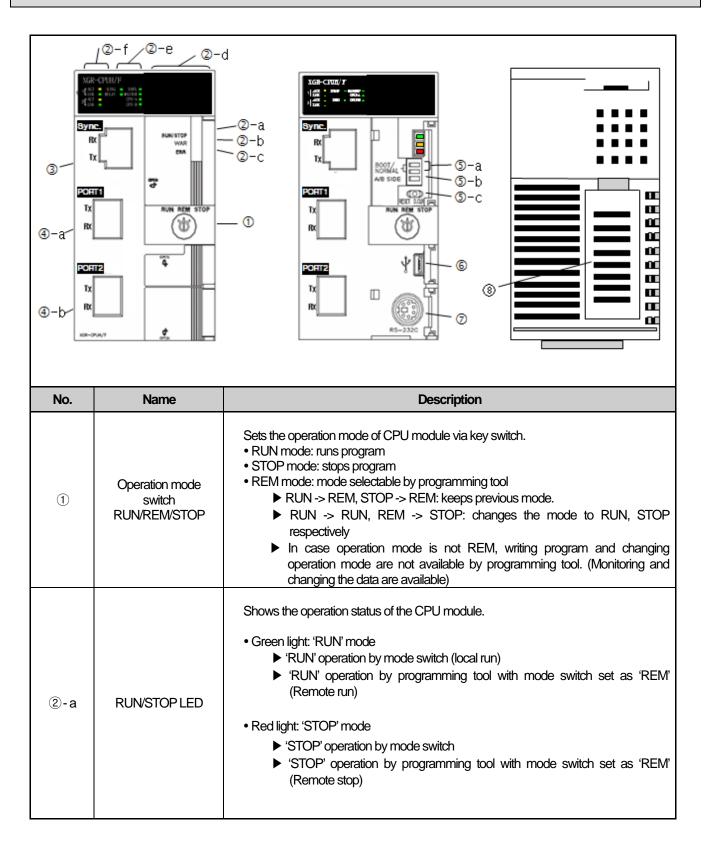
3-1

Г

Chapter 4 CPU Module

4.1 Performance Specifications

The performance specifications of the redundant CPU module are as follows.


	rne penormance specifications of t				Demode		
	Ite	em		XGR-CPUH/F	XGR-CPUH/S	XGR-CPUH/T	Remarks
Progra	Program operation method		od	Scan program: Reite Task program: Initiali			
I/C) Contr	ol system		Scan synchronous b	oatch processing syste	m (refresh system).	Direct method by command is not supported.
Pro	ogram	language		LD (Ladder Diagram SFC (Sequential Fur IL (Instruction List, vie	,)	
		Operator		18			
		Basic func	tion	130 types + real nu	umber operation function	on	
No. o Instructio		Basic func block	tion	41			
		Dedicated function bl		FB dedicated for sp	ecial module, FB for p	rocess control	
0.000		Basic		42 ns / command			
Operat process		MOVE		112 ns / command			
speed (b	speed (basic instruction) Real number operation		ber	±: 602 ns(S), 1,078 x: 1,106 ns(S), 2,3 ÷: 1,134 ns(S), 2,6	S: Single real number D: Double real number		
Progra	Program memory capacity		city	3MB	Including upload program		
I/O	points(installable)		23,808 points (31bas			
Max. I/O r	nemor	y contact p	oint	I: 131,072, Q: 131,0			
	Input	variable(l)		16KB	%IW0.0.0~%IW127.15.3		
	Outpu	ut variable((ב)	16KB	%QW0.0.0~%QW127.15.3		
	Auton area(/	natic variab 4)	le	512KB (max. 256KB	3 retain settable)		
			М	256KB (max. 128KB	3 retain settable)		
	Direct	variable	R	64KB * 2 blocks			64KB per block
Data			W	128KB			Same area with R
memory	F K		4KB			System flag	
			К	16KB (PID 256 loops	PID flag		
	Flag	y variable	L	22KB			High speed link flag
			N	42KB			P2P flag
			U	32KB (31 base, 16 s	lot, 32channel)		Analogue refresh flag

1

ltem			Remarks				
	lem	XGR-CPUH/F	XGR-CPUH/S	XGR-CPUH/T	Occupying 20 bytes		
т	Timer		• No point limit • Time range: 0.001~ 4,294,967.295 second (1,193 hours)				
Co	Counter		 No point limit Coefficient range : 64 bit expression range (-32,768 ~ +32,767) 				
	Total no. of programs	256					
	Initialization task	1(_int)					
Program structure	Fixed cycle task	32 (range: 0~31)					
	Internal device task	32 (range: 64~95)			Processed at scan END		
Operat	tion mode	RUN, STOP, DEBUG	3				
Resta	art mode	Cold, Warm					
Self diagn	nosis function	Operation delay monitoring, memory fault, I/O fault, battery fault, power faul and etc					
	Data protection in case of power failure		Setting retain area in the Basic Parameter Retain setting of auto variable				
Max. exp	ansion base	31 stages			One base per stage		
Max. length betw	een expansion base	Optical (2km)	Optical (15km)	Electrical (100m)			
	Operation monitoring between CPU	Redundant monitoring by Sync. Line and ring type I/O network					
	Data backup between CPU	1 G bps optical line, max. length 200 m (recommended)					
	Data Sync. Method between CPU	Set in the Redundancy Parameter					
Redundancy performance Delay in case of redundancy operation		Proportional to data which master transmits to backup - Max. 15ms - optimization available by user setting Basic 15ms + user designated amount (2kword) * 0.250ms/2kword			Refer to 5.1.4		
Master switching time		22ms			Refer to 5.1.4		
Operation delay in case of standby start		About 10% more than single operation scan time			Refer to 5.1.4		
Internal consum	nption current (mA)	1,310 mA		980 mA			
We	ight (g)	276 g		257 g			

Γ

4.2 Names and Functions of Parts

No.	Name	Description
@-b	WAR. LED	 On(yellow): displaying an warning Force I/O setting Skip I/O/Fault mask setting Run when Fuse error Run when Fuse error Run when special module error Run when special module error Run when communication module error Warning abnormal RTC data Warning existence of base which doesn't participate in the operation Abnormal operation stop warning Task collision warning Abnormal battery warning Warning detection of light error of external device High speed link setting warning P2P setting warning Fixed cycle error warning Abnormal base power module warning Abnormal base skip cancellation warning Abnormal base number setting warning Warning redundant configuration Warning OS version inconsistency Warning Ring topology configuration
(2)- C	ERR. LED	 On(red): displays error makes the operation unavailable CPU configuration error Module type mismatch error Module detached error Fuse disconnection error Detection of heavy trouble of external device Basic parameter error I/O parameter error Special module parameter error User program error Program code error CPU abnormal end or malfunction Base power error Scan watchdog error Standby CPU run error Standby CPU run error Redundant parameter error Module insertion location error Expansion base no. overlapped error Redundant Sync. Error A/B side overlapped setting error Base abnormal configuration error Off: No error

Γ

Chapter 4. CPU Module

No.	Name	Description
②-d	Displaying operation status	 Displays operation status with 4 characters Normal operation Warning Error (Refer to XGR error code)
(2)-e	Displaying redundancy status	 Displays operation/installation status of CPU system. RED: On when redundant operation, Off when single operation MASTER: on; CPU operating as master, off; standby CPU CPU-A: on when CPU position designation switch (5-b) set as A CPU-B: on when CPU position designation switch (5-b) set as B
②-f	Displaying expansion network status	 Displays communication status with expansion base ACT On (yellow): relevant channel is operating LINK On (Green): link of relevant channel is connected 1 indicates upper channel (4-a), 2 indicates lower channel (4-b). RING On (Green): Expansion network is configured as Ring. Ring Off: Expansion network is not established or configured as Line because part of Ring fails
3	Sync. connector	Data sharing and monitoring between two CPUS.
(4)-a (4)-b	Connector for expansion connector	Connector used for connecting with expansion base • For easy Ring configuration, two connector supported • Two types, optical/optical, electrical/electrical
(5)-a	BOOT/NORMAL switch	Used to download OS at first time • BOOT/NORMAL (right side): used for normal operation • BOOT/NORMAL (left side): used to download OS (OS download mode).
(5)-b	A/B side switch (CPU position designation switch)	Designates the logical position of CPU • Left side means CPU position is set as A • Right side means CPU position is set as B • Two CPU should have a different position. (available to check in the programming tool) • In case two PLC are set as same position, the lately started one cause "E101" error

٦

No.	Name	Desci	ription
(5)-c	Reset/D. Clear switch	Operation Setup" 1. When Reset switch is enabled Operation move to left → return to center move to left → keep 3 seconds or above → return to center 2. When D.Clear switch is enabled Operation move to right → return to center: move to left → keep 3 seconds or above → return to center:	ch in "XG5000 → Basic Parameter → Basic Result Reset Overall reset Result General data area and retain area (M, Automatic variable) will be cleared. General data area, retain area (M, Automatic variable) and R area will be cleared. Caution ed in stop mode.
6	USB connector	Connector for connecting with peripheral	(XG5000 etc.) (supports USB 1.1)
Ø	RS-232C connector	Connector for connecting with peripheral	(XG5000 etc.)
8	Backup battery cover	Backup battery cover	

Γ

4.3 Battery

4.3.1 Battery specifications

ltem	Specifications
Nominal Voltage / Current	DC 3.0 V / 1,800 mAh
Warranty period	5 years(at ambient temperature)
Applications	Program/data backup, RTC operation in case of power failure
Туре	LiMnO2 Lithium Battery
Dimensions (mm)	φ 17.0 X 33.5 mm

4.3.2 Cautions for usage

(1) Do not heat it up nor weld the electrode(it may reduce the life)

(2) Do not measure the voltage with a tester nor short-circuit it(it may cause a fire).

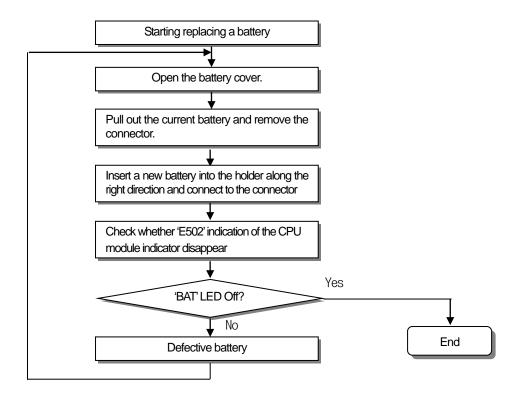
(3) Do not disassemble it without permission.

4.3.3 Battery life

The XGR-CPUH is designed to use it for 7 years and longer at any environment. However, the battery life varies depending on the duration of power failure, operation temperature range and etc.

If the battery voltage level is low, the CPU module generates a warning of 'Low Battery Level'. It can be checked by the LED of the CPU module, flag and error message in XG5000.

If it is occurred to a low battery level warning, please shortly change the battery.



In general, it generates the warning after 7 years from the purchase, but if the current is excessively discharged due to defective battery or leakage current, it may warn it earlier. If it warns shortly after replacing a battery, the CPU module may need A/S service.

4.3.4 Replacement

A battery used as a backup power for program and data in case of power failure needs replacing regularly. The program and data is kept by the super capacity for about 30 minutes even after removing the battery, but it needs urgently replacing it as soon as possible.

Replace a battery in accordance with the following steps.

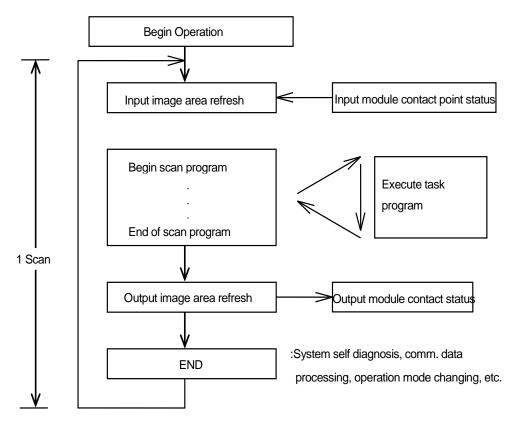
Chapter 5 Program Constitution and Operation Method

5.1 Program Basics

5.1.1 Program Structure and Execution

The program for the XGR PLC is made out with XG5000, compiled into an executable program, and transmitted to PLC for execution.

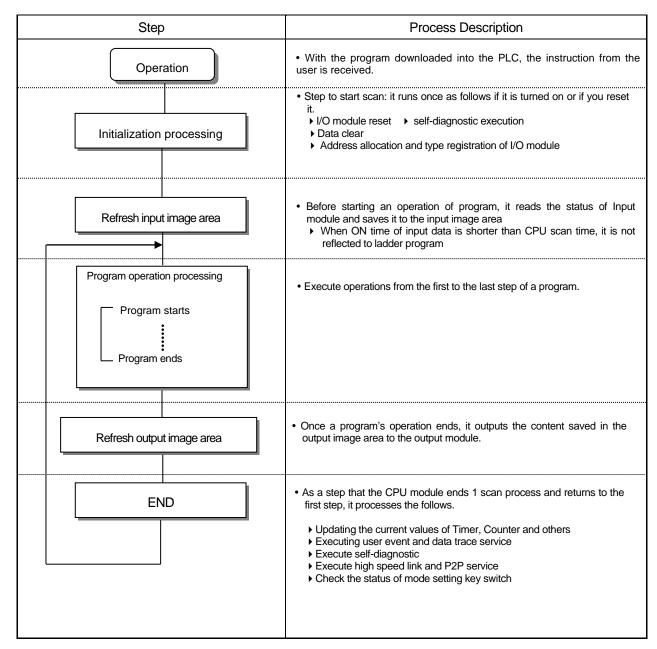
(1) The programs can be classified into scan programs and task programs. The scan programs are executed at every scanning, and the task programs are executed by a task.


- Scan program: the program executed every scan repeatedly
- Task program: the program executed by task

(2) A scan program runs from the first to the last step registered in the project in the registered order, and terminates the scanning (END). The entire process is referred to as "1 scan."

(3) This process methodology which runs a program from the beginning to the end and then runs the entire process again, is called 'cyclic operation method.'

(4) Before starting the operation of a scan program, the status of the input module is read and saved in the input image area, and the status of the output image area is outputted to the output module when the operation of the scan program is completed. This process is called 'I/O Refresh.'

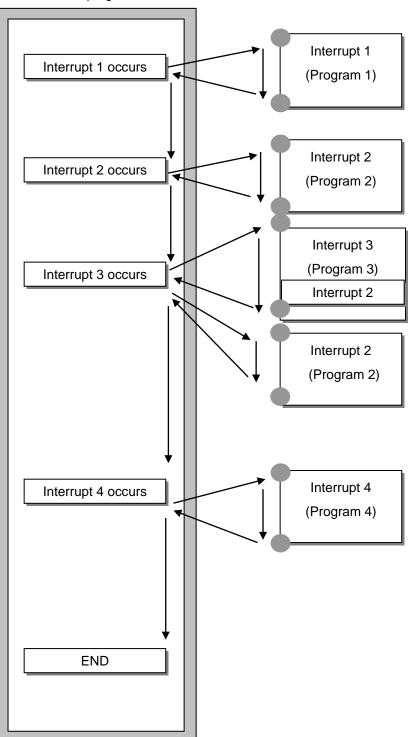

(5) XGR PLC series is based on the cyclic operation method. In the operation process, input or output status is not entered directly, but the operation is executed by I/O refreshing by scan unit basis. To this end, the statuses of the input and output contact points are stored in the memory area of the PLC. This area is called image area.

5.1.2 Program Execution Methodology

(1) Cyclic Operation Method (Scan)

A program scan is an operation cycle of a program from the first step to the end step. In a cyclic operation, the first step is restarted after the end step of the previous scan has been completed. The table below shows this process by step.

Note


The synchronization between the data of the master CPU and standby CPU begins after the start-up of the standby CPU. See 5.3 Operation Mode for the details of redundant operation.

(2) Interrupt Operation Method (Fixed Cycle Task Program)

In the interrupt operation method, if it is required to execute a task program with priority during scan program operation, the current scan program operation is interrupted and the task program is executed. When the task program operation is completed, the system returns to the previous scan program operation.

An interrupt signal instructs the CPU to execute a task program with priority.

A typical interrupt operation is the fixed cycle interrupt operation. In this method, the interrupt signals are generated at the times preset by the user to execute task programs. After the completion of a task program, the system returns to the scan program.

Scan program

(3) Constant Scan

Γ

Constant scan is an operation method which repeats the execution of a basic scan program at fixed cycle time. In case that the fixed cycle time is longer than the time required for executing the scan program, the system waits for the remaining time, and restarts the scan program at the beginning of the next cycle time. Therefore, different from the fixed cycle task program, the program can be executed matching the I/O refreshing and synchronization. In such case, the scan time is indicated excluding the waiting time.

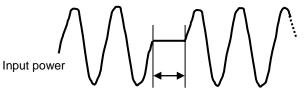
On the contrary, if the fixed cycle time is setup shorter than the time elapsed for the scan program execution, the '_CONSTANT_ER' flag is turned 'ON' and the operation is executed with the time during which the operation can be executed.

The constant scan can be setup with the basic parameters of the XG5000.

Basic Parameter Setting	2 🛛
Basic Operation Setup Retain Area Setup Error Operation Setup	
Basic Operation □ Fixed period operation mode (1 ~ 999ms): Time Sctup Watchdog Timer: (10 ~ 1000ms) Standard Input Filter: 3 ♥ ms	Output Control Output during debugging Keep output when an error occurs Keep output when converting RUN->STOP Keep output when converting STOP->RUN SOE History SoE History Save the latest SOE events Save the first SOE events
Cold Hestait	
Reset Switch Operation Isolation Setup	D.CLR Overall Reset Switch Operation Isolation Setup
Reset Switch Operation Isolation	D.CLR Overall Reset Switch Operation Isolation
Overall Reset Switch Operation Isolation	Overall D.CLR Overall Reset Switch Operation Isolation
	Default OK Cancel

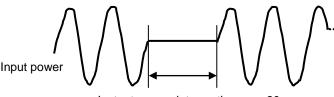
Note

When configured for a constant scan operation, the scan time is indicated as follows.


The maximum and current scan times are indicated with the scan times setup with the fixed cycle operation parameters, and the minimum scan time indicates the actual time elapsed for the program execution deducted with the waiting time.

5.1.3 Operation of instantaneous interrupt

The CPU module detects instantaneous interruption when the voltage of input power supplied to the power module is lower than the nominal value.


If the CPU module detects instantaneous interruption, it processes operation as follows.

(1) In case of instantaneous interruption within 20ms occurs

Instantaneous interruption within 20ms

(2) In case of instantaneous interruption over 20ms occurs

Instantaneous interruption over 20ms

- (a) It stops an operation with the output at the moment of instantaneous interruption maintained.
- (b) It resumes the operation once the interruption is removed
- (c) The output voltage of power module is maintained within the specified value.
- (d) Even though an operation stops due to instantaneous power failure, timer measurement and interrupt timer measurements still work normally.

(a) It executes initialization process such as when it is turned on

(b) In a redundant CPU operation, the system

triggers CPU switch-over.

- (3) If the system has a redundant power, the operation will be one of followings;
 - (a) Instantaneous power interruption in one of two power modules which have been in operation;
 - the other power module keeps operation, without interrupting PLC operation.
 - (b) Instantaneous power interruption in both power modules by shorter than 20ms;
 - the modules operate as described in Clause 1) above.
 - (c) Instantaneous power interruption in both power modules by longer than 20ms;
 - the modules operate as described in Clause 2) above.

Note

(1) What is instantaneous interruption?

It means the status that the power supply voltage specified in the PLC is out of the allowable variance range and falls, and especially, a short term interruption(several ms ~ dozens of ms) is called instantaneous interruption.

(2) CPU switching

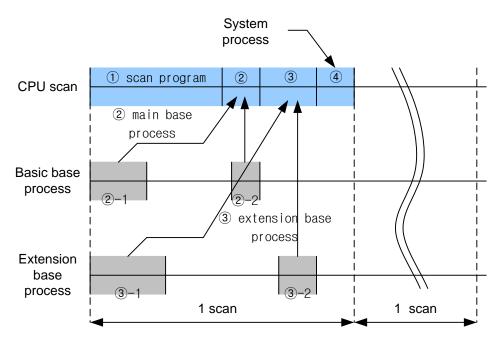
In a redundant CPU operation, if a power interruption longer than 20ms occurs in all the power modules of the master CPU, the operation is switched over to the standby CPU. For the details of redundant operation, see 5.3 Operation Mode.

5.1.4 Scan Time

Γ

The time required to complete all steps from the first step (0 step) to last step, that is, a time taken for one control operation is called 'scan time.' It is directly related to the control performance of the system.

(1) Operation and performance of XGR


The major factors which influence scan time are program operation time, I/O data process time, communication service time, and the data synchronization between the master and standby CPUs. By utilizing the hardware relay method for the data exchange between expansion drive modules, the data communication performance of the XGR is greatly improved. In addition, the scan time is greatly reduced by MPU's ladder program execution and the paralleled execution of the I/O data scanning by bus controller.

Item	Content to be processed	time
Process time of scan program	Scan program+ Task program	42ns per 4 byte of execution program
Process time of basic base	Module process	Communication module: within 200 µs per one
	Communication service	Within 500 μ s per one service
	Every expansion base	Within 300 μs per one base
	Module process	Digital I/O: within 10 ^{µs} per one Special module: within 30 ^{µs} Communication module: within 150 ^{µs}
Process time of Expansion	Communication service	Within 1000 μ s per service
base	PUT/GET instruction process	Different according to data ~ 0.5 kbyte : 800 \mus or less ~ 1 kbyte : 2.5 ms or less ~ 4 kbyte : 8 ms or less ~ 8 kbyte : 15 ms or less
Process time of system	Basic O/S process routine, module error check, Fault mask, I/O skip etc.	Different according to setting environment In case of normal operation, within 4ms

In a single CPU operation, the scan process times of CPU are as follows.

(2) Calculation of scan time (Single CPU operation)

The CPU module executes controls along the following steps. A user can estimate the control performance of a system that the user is to structure from the following calculation.

Scan time = (1) scan program process + (2) basic base process + (3) expansion base process + (4) system process

① Scan program process = program size/4 x 0.042 (usec)

(For correct scan time calculation, add the execution speed of the applied instructions.)

- 2 Basic base process
- 2-1. module process: processes refresh data of module in basic base
- Communication module: 200 /Js or less per one
- 2-2. communication service process: executes HS, P2P service
 - 500 µs or less per one service
- 3 Expansion base process
- 3-1. module process: processes refresh data of module in basic base
 - Process time per expansion base: 300 //s or less per expansion base
 - Digital I/O: 10 Hs or less per one
 - Special module: 30 $\mu s\,$ per one
 - Communication module: 150 µs or less per one
- ③-2. Communication service process and PUT/GET instruction process: executes HS, P2P service and PUT/GET instruction set by user
 - Communication service process: 1000 µs or less per service
 - PUT/GET instruction process
 - ~ 0.5 kbyte : 800 μ s or less
 - ~ 1 kbyte : 2.5 ms or less
 - ~ 4 kbyte : 8 ms or less
 - ~ 8 kbyte : 15 ms or less

④ System process: executes system internal process includig basic O/S process routin, battery check, module error

check, I/O skip, forced I/O, loader service etc.

- different according to the environment In case of normal 4ms or less

Example

CPU(program 32KB) + 6 32-point I/O modules + 6 analog modules (total PUT/GET size 1000byte) + 4 communication modules (two in basic base, other two in expansion base, one communication service setting for each module) What is the scan time of above system (the number of expansion base is 2) Scan time(μ S) = ladder process time + basic base process time + expansion base process time + system process time = (32768/4 x 0.042) + (200 x 2(two communication modules) + 500 x 2) + (300 x 2(expansion base) + (10 x 6)+(30 x 6)+(150 x 2) + 1000 x 2 + 2500(PUT/GET)) + (4000) = 11384 μ S = 11.4 mS

(3) Scan time monitor

In an actual XGR CPU operation, the actual scan time can be obtained by monitoring following data.

(1) Scan time is saved into the following flag(F) areas.

_SCAN_MAX : max. value of scan time(unit of 0.1ms)

_SCAN_MIN : min. value of scan time(unit of 0.1ms)

_SCAN_CUR : current value of scan time (unit of 0.1ms)

_SCAN_MAX, _SCAN_MIN value can be initialized using _SCAN_WR flag.

If the _SCAN_MAX is larger than WDT (Watch Dog Timer) value, a system error occurs. The WDT time can be setup with the basic parameters.

(4) Scan Time in Redundant Operation

In redundant operations, compared with single CPU operation, the scan time substantially increases due to the system data sharing between the CPUs. The scan time also varies according to the data volume setup by the user in the redundancy parameter setting area. The increase in the scan time by data volume is as follows.

		etting				
asic Operation Se	tup FEnet	I/F Operation Setup				
Hot Swapping Option						
Base						
Module						
Extended Base Power Failure Setup						
Restart and	wait					
O Base power	failure error					
Warning Option						
Disable war	ning for single	e power operation				
Disable war	ning for ring to	opology				
_						
	Disable warning for single CPU mode					
Disable war	hing for fault i	mask removal				
Redundancy Synchronization Area						
Redundancy Sy	Inchronizatio					
Redundancy Sy	Used	Start	End			
I/O Base	Used V	Start 0	31			
1/0 Base M Area	Used V	0 %MD0	31 %MD999			
1/0 Base M Area R Area	Used V V	Start 0 %MD0 %RD0	31 %MD999 %RD999			
1/0 Base M Area R Area	Used V V	Start 0 %MD0 %RD0	31 %MD999 %RD999			
I/O Base M Area R Area W Area PID Block	Used V	0 %MD0 %RD0 %WD0/%WD16384 0	31 %MD999 %RD999 %WD999/%WD17383 0			
I/O Base M Area R Area W Area	Used V V V	Start 0 %MD0 %RD0 %WD0/%WD16384	31 %MD999 %RD999 %WD999/%WD17383			
I/O Base M Area R Area W Area PID Block	Used V V V	0 %MD0 %RD0 %WD0/%WD16384 0	31 %MD999 %RD999 %WD999/%WD17383 0			
I/O Base M Area R Area W Area PID Block	Used V V V	0 %MD0 %RD0 %WD0/%WD16384 0	31 %MD999 %RD999 %WD999/%WD17383 0			

ition ion of the cat	I/F Operation Setup		
ion of the cal			
ion of the cal			
ion of the ser	ver connection		
ION OF LINE BOI	ver connection		
witchover (re			
Slot	Group		
	None		
		>	
	witchover (re	None None None None None	witchover (redundancy operation) Slot Group None None None None None None None None

Chapter 5. Program Configuration and Operation Method

Redundancy parameter	Contents	Operation
Hot swapping	Base	Though base error occurs in normal RUN mode, system except that base operates. And if that base is restored, it operates normally.
option	Module	Though module is disabled, module detachment error doesn't appear. If that module is enabled, it operates normally.
Expansion base power failure	Restart and wait	When two power modules of expansion base are off, system goes to WAIT mode (Ebxx)
setup	Base power failure error	When two power modules of expansion base are off, CPU error appears
	Disable warning for single power operation	Disables warning message when one between two power modules in expansion base is off
Morning option	Disable warning for line Topology	Disables warning message when becoming line topology
Warning option	Disable warning for Single CPU Mode	Disables warning message when becoming Single CPU Mode
	Disable warning message for fault mask removal	Disables warning message when fault mask is removed.
	Disconnection of the cable	When the cable is disconnected, it is instantly switched. (within 1s)
Communication operation setting	Disconnection of the server connection	Master automatic switchover (redundancy operation) → When Master/Standby is acting as FEnet server, if the cable of the Master is disconnected, Standby becomes Master.

(a) Redundant CPU system data: share basic data, e.g., system flag, communication flag, etc. (2.8ms)

(b) Redundancy parameter setting data: synchronization time in each area is as follows;

I/Q base: 1ms/32 bases

M area: approx. 250 μ s per 2 kwords. Approx. 16 ms for synchronizing 128kword

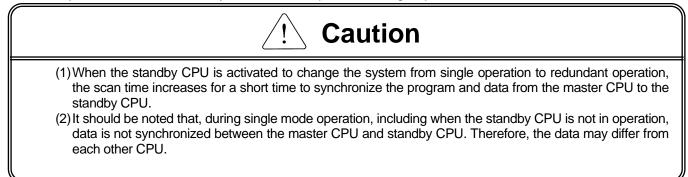
R area: approx. 1.5ms per 2 kword. Approx. 12ms for max. 16 kword synchronization. (When 2 kword in R area is transmitted, 2 kword in W area are also transmitted; total 4 kword are transmitted)

PID Area: 016.7 μ s required for each PID setting one loop. When max. 8 blocks are synchronized, approx. 4ms is required.

Automatic variable area: 32KB → 2.5ms required

Example

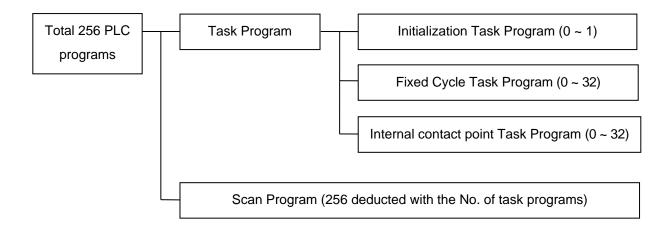
CPU(program 32KB) + 6 32-point I/O modules + 6 analog modules (total PUT/GET size 1000byte)


+ 4 communication modules(two in basic base, other two in expansion base, one communication service for each one module) what is the scan time of above system? (Two expansion bases, synchronizes M area 2kword and PID 2 blocks)

Redundancy Run scan time = single Run scan time + time for synchronizing redundancy data

- = Single Run scan time + redundancy system data+ I/O base + synchronizing M area and PID area
- = 11.4ms + 2.8ms + 1ms + 0.25ms + 0.5 x 2
- = 16.45

(5) Delay Time at Entering Redundancy Operation


When a redundant CPU is added to single CPU operation, the scan time of the current scan cycle is increased temporarily, for the standby CPU to be initiated to enter redundancy operation mode. Since the data synchronization is carried out by 10% equivalent to the scan time of single operation, the scan time during the data synchronization increases by about 10% compared with single operation.

5.2 Program Execution

5.2.1 Program Type

The programs for the XGR PLC can be classified as presented in the chart below, according to their conditions of execution. Total 256 programs can be used.

5.2.2 Program Execution

(1) Task Program

(a) Initialization Task Program

The initialization task programs are used for system initialization when starting PLC operation in cold or warm restart mode.

During the execution of an initialization task program, the system operation status information flag _INIT_RUN is turned to ON.

The initialization task program executes cycle operation including I/O refresh until the _INIT_DONE flag is ON.

(b) Fixed Cycle Task Program

Fixed cycle task programs are executed in repetition at the cycle setup in the task.

(c) Internal Contact Point Task Program

The internal contact point task programs are executed when such events as rise, fall, transition, on, or off of the internal contact points occur.

The point of time of execution is determined by the condition of event occurrence after the completion of scan program.

(2) Scan Program

In order to process the signals which are repeated regularly in each scan, the operation is executed from the first (0) step to the last step in the sequential order.

In case that a condition of interrupt execution is met by the fixed cycle task or interrupt module during the execution of scan program, the current program is suspended, and the respective task (interrupt) program is executed. The occurrence of an event of internal contact point program is checked when the scan program has been completed.

Caut	ion
 Of the initialization tasks, the first scan On/Off is executed next scan until the completion of _INIT_DONE. The above mode applies when the master CPU is started according to the status of the master, restart mode does not For manual reset switch activation in redundant operation, Activating the reset switch of the master CPU will restart the the standby CPU will restart the standby CPU only. When activating the Run/Stop switch during redundant operation of the standby CPU will operates as master. 	from stop state. Since the standby operates apply. please take care of followings; entire system, but activating the reset switch of eration, please take care of following;

5.2.3 Restart Mode

Г

The restart mode sets up the method of initializing variables and the system at the start-up of PLC operation. Restart mode has two types; cold and warm restart, which can be set up in the basic parameters of the XG5000.

Basic Parameter Setting	2 🛛
Basic Operation Setup Retain Area Setup Error Operation Setup	
Basic Operation □ Fixed period operation mode (1 ~ 999ms): Time Setup Watchdog Timer: (10 ~ 1000ms) Standard Input Filter: 3 vms	Output Control Output during debugging Keep output when an error occurs Keep output when converting RUN->STOP Keep output when converting STOP->RUN SOE History SoE History Save the latest SOE events Save the first SOE events
Reset Switch Setup Disable the reset switch Disable the overall reset switch	D.CLR Overall Reset Switch Setup Disable the D.CLR reset switch Disable the overall D.CLR reset switch Default OK Cancel

When the standby CPU starts up, it executes the initialization according to the restart mode and receives the program and data backup from the master. When set up in flash operation mode, it receives the flash data backup from the master too.

When the standby CPU is switched to master CPU during operation, it is not a restart, therefore, no further action is taken.

The conditions of the execution of the restart modes are as follows.

(1) Cold restart

- (a) All data is reset (deleted) to "0." Here, the 'all data' means the M area, R area, and automaton variables. The flag area, such as PID, which does not belong to this category is not deleted.
- (b) Only the variables whose initial values are set up are reset to the initial values.
- (c) Even though the parameter is set up to warm restart mode, at the first running after changing the program to be executed, the following program will be executed with cold restart mode.
- (d) Pressing the manual rest switch for 3 seconds (same as the overall reset of the XG5000), the system will start in cold restart mode regardless of the set up restart mode.

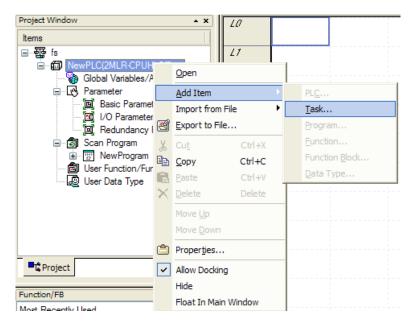
(2) Warm restart

- (a) The data which was set up to maintain previous value will maintain the previous value. The data which has user defined initial value will be reset to the initial value. Other data will be deleted to "0."
- (b) When set up in warm restart mode, too, the first run, after an interruption by program download or error, will be started in cold restart mode.
- (c) When set up in warm restart mode, if the data is abnormal (data was not maintained during a power failure), the system will be started in cold restart mode.
- (d) Pressing the manual reset switch for less than 5 seconds during power-on, same as the reset instruction in the XG5000, if the setting is warm restart mode, the operation will begin in warm restart mode.

Data initialization according to the restart modes are as follows.

The variables related with restart mode are default, retain, and initialization variables. The method of initializing the variables in the execution of restart mode is as follows.

Mode Variable	Cold	Warm
Default	Initialize to '0'	Initialize to '0'
Retain	Initialize to '0'	Maintain the previous value
Initialization	Initialize to user defined value	Initialize to user defined value
Retain & Initialization	Initialize to user defined value	Maintain the previous value


5.2.4 Task Program

I

This section describes the programming and configuration of the task programs with XG5000 which is the programming software of the XGR.

(1) Programming Task Programs

(a) In the project window of the XG5000, select the PLC to which the task is added. Click the right button of mouse, and select [Add Item]-[Task].

(b) In the Task dialog box, set up the task to be added, and click Confirm button.

Task name: task1 OK Priority: 2 Cancel Task number: 0 (Cycle time: 0^31, I/O: 32^63, Internal address: 64^95) Execution condition Initialization O Lycle time ms VO 0 (0^77) VO execution conditions Initialization Image: Conditions Image: Conditions
Task number: 0 (Cycle time: 0~31, I/O: 32~63, Internal address: 64~95) Execution condition O Initialization O Cycle time ms VO 0 (0~7) VO 0 (0~7) VO 0 execution conditions
Execution condition Instalization O Instalization O Cycle time ms UO 0 (0~7) UO conditions
O Initialization O Cycle time ms U0 0 0 0 7 1/0 execution conditions
OCycle time ms I/O 0 (0^~7) I/O execution conditions 0
UO 0 (0~7)
I/O execution conditions
O Internal address BIT
Internal address execution conditions
Address: 0
Rising Falling Transition On Off

Note

External contact point task is not supported in the XGR PLC Series, and will be developed in the near future.

(c) The configured task will be displayed as shown in the window below. For detail configuration, see the User Manual of the XG5000.

٦

Project Window	▲ X
Items	
Items Image: Second state	
Project	

(2) Task Types

The below table summarizes the types and functions of tasks.

Type Spec.	Initialization	Cycle time	Internal address
Number	1	32	32
Start-up condition	When entering RUN mode, prior to starting scan program	Cycle time (settable up to 4,294,967.295 seconds at the unit of 1ms)	Conditions of internal device designation
Detection/exec ution	Execute until the flag _INIT_DONE is ON	Cyclically execute at the pre- defined interval.	Checks and Executes after completing scan program
Detection delay time	-	Delayed as long as 0.2ms to the max.	Delayed as long as the max. scan time.
Execution priority		Setting 2 ~ 7 levels (level 2 is the highest priority)	Setting 2 ~ 7 levels (level 2 is the highest priority)
Task number	-	Assigning it between 0~31 so that it is not duplicate	Assigning it between 64~95 so that it is not duplicated

(3) Processing method of task program

It describes the common processing method and cautions of task program

(a) Features of task program

• Task program does not reiteratively be processed like a scan program and instead, it is executed only when the execution conditions occur. Make sure to remember this when creating a task program.

• For instance, if a task program with 10 seconds of fixed cycle is used with a timer and counter, the timer may have an error of 10 seconds maximum while the counter checks every 10 seconds, any counter input changed within 10 seconds is not counted.

(b) Execution priority

• If several tasks to execute are waiting, it processes from the highest priority task program. If there are several tasks of same priority, they are processed by the order which is occurred.

· The task priority is applied to only each task.

• Please set the priority of task program considering program features, importance level and urgency demanding execution.

(c) Process delay time

The delay of task program processing occurs due to the following factors. Make sure to consider them when setting a task or creating a program.

- Task detection delay(please refer to the details of each task)
- Program execution delay due to the execution of preceding task program

(d) Correlation between scan program and task program in the initialization

Fixed Cycle task and internal contact point task does not operate while initialization task program is working. Since scan program has a low priority, if a task occurs, it stops a scan program and executes a task program. Therefore, if tasks frequently occur during one scan, a scan time may increase unreasonably. A special attention should be paid when setting the conditions of task. (e) Protection from task program of a currently running program

• If program execution continuity is lost by executing a higher priority program, you can partially protect the task program from being executed, for a problematic part. At the moment, a program can be protected by application function commands of 'DI (task program operation disabled)' or 'EI(task program operation enabled)'

• Insert the application function command, 'DI' into the beginning position of a section to be protected and the application function command, 'EI' to the position to cancel it. Initialization task is not affected by the application function commands of 'DI' and 'EI'.

Note

(1) If task program priority is duplicate set, a program works according to the creation order.

(4) Cycle Time Task Program

(a) Setting up cycle task

Γ

The window below shows the setting up of a fixed cycle task. In order to set up a fixed cycle task, enter task name, priority, and task number for task control, and select Fixed Cycle radio button in the Condition of Execution, and enter the cycle time of execution.

Task	? 🗙
Task name: Cycle	ОК
Priority: 3 💌	Cancel
Task number: 0 (Cycle time: 0~31, I/O: 32~63, Internal a	address: 64~95)
Execution condition	
O Initialization	
Cycle time 10 ms	
○ I/O 0 (0~7)	
I/O execution conditions I/O executi	
O Internal address BIT	
Internal address execution conditions	
Address: 0	
Rising Falling Oransition On	Off

- (b) Fixed cycle task processing
 - Execute a fixed cycle task program at a pre-defined interval.
- (c) Cautions for using a fixed cycle task program

•If a same task program is to be executed when a fixed cycle task program is in operation or waiting for execution, a new task is ignored.

• Only for a moment when the operation mode is RUN, a timer requiring executing a fixed cycle program is counted. Any interruption time is ignored.

• Remember that several fixed cycle task programs are to be executed simultaneously when setting the execution cycle of a fixed cycle task program.

If using 4 fixed cycle task programs of which cycle is 2, 4, 10 and 20 seconds respectively, it may have simultaneous execution of 4 programs every 20 seconds, probably causing a longer scan time.

- (1) Note that if the total time length during which cycle time task are executed simultaneously is longer than the specified time length when several cycle time tasks occur simultaneously, a short cycle time task may not be successfully executed.
- (2) The only cycle time task of which cycle is longer than scan cycle can be guaranteed for the fixed cycle.

(5) Internal device task

Bit and Word device can be set as execution condition for task.

(a) Task setting

In order to set up an internal device task, set task name, priority, and task number, Internal Device, the type of device and

the condition of start up (Rising, falling, transition, on and off)

Task ?
Task name: Internal address OK
Priority: 3 Cancel
Task number: 64 Cycle time: 0~31, I/O: 32~63, Internal address: 64~95)
Execution condition
O Cycle time ms
○ I/O 0~7)
☐I/O execution conditions
Rising Falling Transition
⊙ Internal address BIT 👻
Internal address execution conditions
Address: %IX0.1.1 < 🗸 0
⊙ Rising ○ Falling ○ Transition ○ On ○ Off

(b) Internal Device Task Handling

After the completion of scan program by CPU module, the internal device task program will be executed if starting

condition is met according to the priority.

Internal address task program is executed at the moment when a scan program is completely executed. Therefore, although a scan program or task program generates the execution conditions of internal address task program, it is not immediately executed and instead, it is executed at the moment when a scan program is executed completely. Therefore, if the execution conditions of internal address task occur and disappear within a scan program, a task is not executed because it is not detected at the moment when the execution conditions are surveyed.

(6) Task processing in instantaneous interruption

When resuming operation due to a long instantaneous interruption, ignore any waiting task and tasks that occur during the interruption and process the only tasks from the moment of starting operation. If an interruption is within 20ms, a task that was waiting is executed once the interruption is removed. Any fixed cycle interrupt task that is duplicated during the interruption is ignored.

(7) Verification of task program

After creating a task program, verify it in accordance with the followings.

(a) Is the task set properly?

If a task occurs excessively or several tasks occur simultaneously in a scan, it may cause longer scan time or irregularity If a task setting can not be changed, check the max. scan time.

(b) Is the task priority well arranged?

A low priority task program may not be processed in a specified time due to a delay from a higher priority task program. The case may be, since the next task occurs with a preceding task delayed, it may cause task collision. The priority should be set in consideration of urgency of task, execution time and etc.

(c) Is the task program created as short as possible?

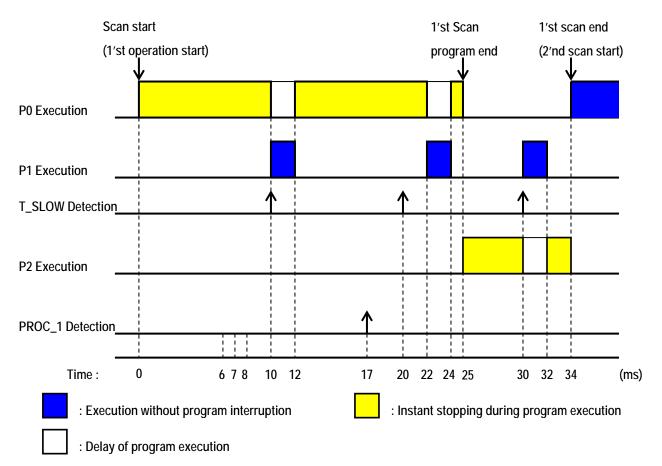
A longer execution time of task program may cause a longer scan time or irregularity. In addition, it may cause task program collision. Make sure to set the execution time as short as possible(especially, create a fixed cycle task program so that it could be executed within 10% of the shortest task cycle among several tasks.)

(d) Doesn't the program need to be protected against the highest priority task during the execution of program?

If a different task breaks into a task program execution, it completes a current task and then, operates from a task with the highest priority among waiting tasks. In case it is prohibited that a different task breaks into a scan program, it can be protected by using 'DI' /' EI' application functional commands. It may cause a trouble while processing a global parameter process commonly used with other program or a special or communication module.

(8) Program configuration and example of processing

First of all, register task and program as follows.


• Registering a task :

T_SLOW (fixed cycle := 10ms, Priority := 3) PROC_1 (internal contact := M0, Priority := 5) • Registering a program :

Program>	P0	(scan program)
Program>	P1	(operating by task T_SLOW)
Program>	P2	(operating by task PROC_1)

Then, if the program execution time and the occurrence time of external interrupt signal are same,

- Execution time of each program: P0 = 21ms, P1 = 2ms and P2 = 7ms, respectively
- PROC_1 occurrence: During a scan program, the program is executed as follows.

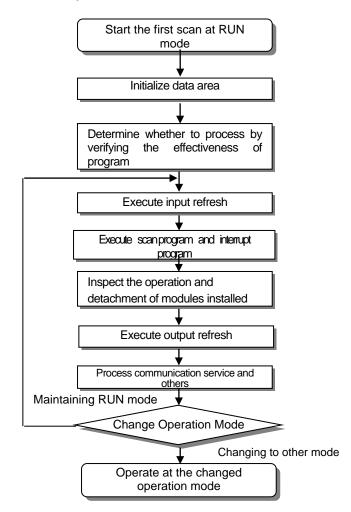
• Processing by time period

Γ

Time(ms)	Processing	
0	Scan starts and the scan program P0 starts operation	
0~10	Program P0 is executed	
10~12	P0 stops due to the execution request for P1 and P1 is executed	
17	Execution request for P2	
12~20	P1 execution is complete and the suspended P0 resumes	
20~24	P0 stops due to the execution request for P1 and P1 is executed	
24~25	As P1 execution is complete, the suspended P0 is completely executed.	
25	Check the execution request for P2 at the moment when scan program(P0) is complete and execute P2.	
25~30	Execute program P2	
30~32	P2 stops due to the execution request for P1 and P1 is executed	
32~34	As P1 execution is complete, the suspended P2 is completely executed.	
34	Start a new scan(P2 execution starts)	

5.3 Operation Mode

5.3.1 Operation Mode


(1) Program Execution Mode

Program execution mode is the status of program execution by the CPU module. There are three modes; Run, Stop, and Debug. The operational status of each mode may vary by the status of the redundant operation.

It describes the operation process at each operation mode.

5.3.2 RUN mode

It executes a program operation normally.

- (1) Process of switching to Run mode
 - (a) When the PLC module is switched to the Run mode, the data area is initialized.
 - According to the set up restart mode (cold, warm)
 - (b) Check the program validity to judge the possibility of execution.
- (2) Operation process

Execute I/O refresh and program operation.

- (a) Execute the interrupt program by detecting the operation conditions of interrupt program.
- (b) Inspect the operation and detachment of modules installed.
- (c) Process communication service and other internal operations.
- (d) Synchronize the data between the master and standby CPUs.

5.3.3 Stop Mode

It stops with no program operation. Program can be transmitted through XG5000 only at remote STOP mode.

(1) Process in mode switching

When switched to the Stop mode, the output images are processed in two ways according to the basic parameter setting, as shown below.

Basic parameter settings	· · · · · · · · · · · · · · · · · · ·
Basic Operation Setup Retain Area Setting Error Operation	Setup
Basic operation settings Fixed period operation mode (1 ~ 999ms):	Output control settings
Watchdog timer: 200 ms (10 ~ 1000ms) Standard input filter: 3 vms	Hold output when an error occurs
Cestart Method	Hold output when mode changes from STOP->RUN
	Default OK Cancel

- (a) When set up to maintain output in Run → Stop switching When the mode is switched from Run to Stop operation, the output image area maintains the results of the last operation, and carries out output refreshing.
- (b) When the output is released from maintenance at switching from Run to Stop When the mode is switched from Run to Stop operation, the output image area is deleted and output refreshing is carried out.
- (2) Operation process
 - (a) Execute I/O refresh.
 - (b) Inspect the operation and detachment of modules installed.
 - (c) Process communication service and other internal operations.

5.3.4 Debug Mode

As a mode to find any error from a program or trace an operation procedure, the mode can be changed only from STOP mode. In the mode, a user can verify a program while checking the program execution and data.

- (1) Processing when a mode is changed
 - (a) At the beginning when the mode is changed, initialize the data area.
 - (b) Clear the output image area and execute input refresh.

(2) Operation process

- (a) Execute I/O refresh.
- (b) Debugging operation depending on the settings.
- (c) After completing debugging operation to the end of the program, it executes output refresh.
- (d) Inspect the operation and detachment of modules installed.
- (e) Process communication service and other internal operations.
- (3) Conditions of debug operation

There are four types of debug operation conditions and if reaching the break point, it is possible to set a different type of break point.

Operation condition	Description
Stepwise execution of operation(step over)	Upon an operation command, it executes a unit of operation and stops
Execution according to the designation of break point	Once a break point is designated in a program, it stops at the designated point
Execution according to the status of contact	If designating the contact area to monitor and the status(read, write, value), it stops when the designated operation occurs at the pre-defined contact.
Execution according to the designated scan frequency	Once designating the scan frequency to operation, it stops after operating as many as the scan frequency designated.

Caution

1. Debug mode is only available in single system.

- (1) To use debug mode, turn off the power of standby CPU and so that the system runs in single.
 - (2) Convert to remote stop mode by mode key switch.
- 2. During debug mode, the user can't change mode by mode switch.

(4) Operation method

- (a) Set the debug operation conditions at XG5000 and execute the operation.
- (b) The interrupt program can be set by enabled/disabled at the unit of each interrupt.
 - (For the details of operation, please refer to Chapter 12 Debugging in the user's manual of XG5000)

5.3.5 Switching Operation Mode

(1) How to change an operation mode

An operation mode can be changed as follows.

- (a) Mode change by the mode key of the CPU module
- (b) Change by accessing the programming tool(XG5000) to a communication port of CPU
- (c) Change of a different CPU module networked by XG5000 accessed to a communication port of CPU
- (d) Change by using XG5000, HMI and computer link module, which are networked.
- (e) Change by 'STOP' command while a program is operating.

(2) Type of Operation Mode

(a) Changing program execution mode with mode key the method of changing operation mode using mode key is as follows.

Mode Key Position	Operation Mode
RUN	Local RUN
STOP	Local STOP
$STOP \to REM$	Remote STOP
$REM \to RUN$	Local RUN
$RUN \rightarrow REM$	Remote RUN
$REM\toSTOP$	Local STOP

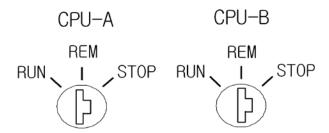
(b) Changing remote operation mode

Changing remote modes can be done with the operation mode switch at 'Remote Allowed: REM.'

Mode Key Position	Mode change	Mode change by XG5000	Change by computer communication, etc.
	Remote STOP \rightarrow Remote RUN	0	\bigcirc (review)
	Remote STOP \rightarrow DEBUG	0	Х
REM	Remote RUN \rightarrow Remote STOP	0	0
	Remote RUN \rightarrow DEBUG	Х	Х
	$DEBUG \to Remote\ STOP$	0	0
	$DEBUG \to Remote\;RUN$	Х	Х

Caution

If changing the remote 'RUN' mode to 'RUN' mode by switch, the PLC is continuously operating without suspension.


Editing during RUN is possible in the 'RUN' mode by switch, but the mode change by XG5000 is restricted. Make sure to change it only when the mode change is not remotely allowed.

5.4 Redundancy System Operation

5.4.1 Redundancy System Operation

(1) Redundant operation mode

A redundant system has data synchronization (SYNC) cable between CPUs. Each CPU module has a key switch for operation mode setting. The key switches look as shown below;

The operation statues of redundancy system can be classified as flows according to the installation, power supply, whether dada communication cable is connected between the CPUs, and the operation mode of each CPU.

Data sync. Cable between CPUs	Current operation status	Operation mode of CPU-A(B)	Operation mode of CPU-B(A)	Description
	Single operation	RUN	STOP	Only CPU-A or CPU-B is operating in redundant operation mode. Same single CPU operation.
Connected	Redundant operation	RUN	RUN	In redundant operation mode, CPU-A and CPU-B are set up as master and standby to perform redundant operation.
	Operation stopped	STOP	STOP	CPU-A and CPU-B are set up as master and standby to perform redundant operation, but the operation is stopped.
Not connected	Single operation	RUN/STOP	-	The operation is same as a single CPU operation.

Caution

When a standby CPU is added to a system operating with a single CPU (master) for redundant operation, the additional (standby) CPU must be installed in accordance with following procedures for uninterrupted operation of the PLC.

- (1) With the power of the standby-side base OFF, construct a same module as the master-side base.
- (2) Install the standby CPU in the CPU mounting slot. And set the A/B side switch in Standby CPU differently from Master CPU.
- (3) Connect the CPUs with the data synchronization cable (Sync cable) and expansion cable.
- (4) Confirm that the cables are correctly connected, turn the power of the standby base ON.
- (5) Turn the operation mode switch to Local Run mode, so that the standby CPU is incorporated in the redundant operation.
- (6) The standby CPU must be incorporated in the redundancy system operation to be able to run the same programs as those of the master CPU.

(Take care that, if the standby CPU has not been participating in the redundant operation, its program may differ from that of the master CPU.)

- (2) Changing redundant operation mode
 - (a) According to the change of the CPU operation mode with mode key or by XG5000, the operation mode of the redundant system is changed as follows.

	Mode Change		Description
Current Status	Master Operation	Standby Operation	
Single Operation	$RUN \to STOP$	STOP status is maintained	When the master is changed to STOP state, the operation is stopped
(RUN/STOP)	(No change: RUN)	\rightarrow RUN	Changing the standby to Run mode, the operation is changed to redundant operation.
Redundant	\rightarrow STOP		If the master is changed to STOP, the standby becomes master in single operation status.
Operation (RUN/RUN)	(No change: RUN)	\rightarrow STOP	If the standby is changed to STOP, the master operates in single operation mode.
Operation Stop (STOP/STOP)	ightarrow RUN		The one, A or B, that enters RUN mode first gets the operation control and becomes the master in single operation status.

- (3) Changing master in redundant operation
 - (a) Conditions for automatic master switching
 - 1) Master CPU power supply failure
 - 2) Master CPU stopped due to failure in program execution
 - 3) Module removal/replacement error in the master CPU's basic base
 - 4) Master CPU failure (CPU excluded)
 - 5) Module on an expansion base is removed (isolated)
 - 6) A system error in the master CPU (abnormal termination of CPU, scan watchdog error)
 - (a) Conditions for manual master switching
 - 1) Master CPU's mode key switch is set to Stop
 - 2) Switched to Stop mode by the XG5000 connected with the master CPU
 - 3) Execution of master switching instruction via XG5000 online access
 - 4) Master/standby switching instruction (MST_CHG) is executed
 - 5) Master/standby switching flag (_MASTER_CHG) is executed.

(c) Conditions that do not switch master

- 1) One of two power supply fails
- 2) Master fails when the standby has been failed
 - a) If the same failure is identified, the operation is stopped.

b) When en error is detected in the module in which error mask has been set up, the master is not switched.

3) When the standby CPU is not in Run operation state

5.4.2 Start-up of Redundant System

- (1) Programming
 - (a) Conduct programming with XG5000. (For details, see 'XG5000 User Manual'.)
 - (b) Transmit the program

Transmit the program with XG5000.

(2) Starting methods

Following methods are available for starting-up PLC;

(a) Starting with local key: Download the program in remote mode (REM), set the front key to 'RUN'

(b) Starting with XG5000:

Set the front key on the CPU module to 'REM,' select RUN on the XG5000's online menu.

(c) Starting by power ON:

When the power is turned ON with the front key set to RUN or if the system was in Remote RUN mode before power OFF, the system can be started by power ON.

(d) Restarting with reset key:

Restarting with reset key has two methods; Reset and Overall Reset

- 1) Reset: activated by pressing the reset button on the front of the CPU module less than 3 seconds. 'RST' will appear on the indicator panel of the CPU. This is the same as power ON/OFF.
- Overall Reset: activated by pressing the reset button on the CPU module for more than 3 seconds. 'RSTC' will appear on the indicator panel of the CPU. When the button is released, the system will be restarted in cold restart.

(3) Beginning the first operation

The procedures of system setting-up and starting-up for the first time operation of a redundant system are as follows.

- (a) Prepare the program bocks suitable for the purpose, in as independent forms as possible
- (b) In the redundancy parameters, set up the data synchronization area.
- (c) When the programming is completed, compile it and carry out debugging.
- (d) Using the XG5000 program tool, access CPU communication port and download the program
- (e) Switch CPU-A or B to RUN mode using the mode switch key or XG5000.
- (f) Switch the CPU which is not the master to RUN mode to set it to the standby CPU
- (g) Stop the CPU-A to check normal operation of the standby CPU-B.
- (4) Participating in operation

When the standby CPU participates in the operation while the master CPU is in operation, the standby CPU is synchronized with the master CPU in following procedures.

- (a) CPU initialization
- (b) Checking the redundant components
- (c) Transfer non-variable data to the master
- (d) Transfer variable data from the master
- (e) Check synchronization with the master CPU
- (f) Participate in the operation at the same time as the master CPU

Note

(1) For the redundant operation mode setting and parameter setting, see '6.7 Redundant System Operation Mode'

- (2) (a), (b), and (c) are processed separately with delay time less than approximately 50ms at every scan of the master.
- (3) (d), (e), and (f) must be processed within one scan of the master, with the delay time not exceeding 50ms.
- (If the volume of the variables used exceeds the standard variable value, the delay time may exceed 50ms. For further information, see '5.1.4 Scan Time')
- (5) Procedures of participating in standby operation

Detail procedures of participating in standby operation are as follows.

- (a) Power ON
- 1) Check that the master is in operation
- 2) Standby entering mode
- 3) CPU self diagnosis
- 4) Transfer program from the master (store in RAM and memory module)
- (b) Checking redundant system components
- 1) Check switching I/O access
- 2) Receive and check switching I/O module information from the master
- 3) Scan the redundant I/O module information installed in the standby-side
- 4) Compare with the I/O parameters

(c)Transfer non-variable data from the master

- 1) Receive the flag from the master (executed by being divided into multiple scans as necessary)
- 2) After confirming that the flag status has not been changed, proceed to (4)
- (d) Receive the variable data from the maser
- 1) User data area and a part of system buffer
- (e) Check synchronicity with the master
- 1) All the operation data in the CPU is synchronized
- (f) Participate in the operation at the same time as the master
- 1) Conduct redundant operation from the input refreshing
- (6) Operation according to starting status

(a) Normal start-up

The master CPU module checks system configuration at power ON. In case of late power on of the expansion base, the base being check appears on the front indicator panel and wait for power on.

- In 'STOP' mode, wait for 10 seconds and switched to Stop mode.
- 1) The first operation after program modification begins in cold restart.

2) When the system had been shut-down normally, the restarting will be performed according to the set-up parameters, including mode key, XG5000, power OFF and reset.

- 3) To cold-restart a system set up in warm restart mode, use reset key or the Overall Reset function of the XG5000.
- 4) If the system was stopped due to an error in operation, the restarting method will be determined by the type and release method of the error (see 'Chapter 13. Program Troubleshooting').
- (b) When I/O skip has been set up
- 1) Since the I/O module set up with skip is excluded from the operation in the restarting, failure check, etc., are not conducted, and included in the operation normally when the skip is released during operation. For detail information, see '9.2 I/O Skip' and '9.3 Module Replacement during Operation.'

(c) When failure mask has been set up

1) Since the modules set up with failure mask are included in the operation in the restarting, failure check, etc., are conducted. However, even if module type disagreement error occurs in the initial phase of the restart, the operation is continued. For further information, see '9.1 Failure Mask.'

2) When the entire bases are set up with mask, if the power of the respective base is off, the CPU waits for power on in waiting mode.

5.5 Memory

The CPU module contains two types of memory that can be used by a user. One is the program memory to save a user program created to construct a system and the other one is the data memory to provide a device area to save the data during operation.

5.5.1 Program memory

Item(area)	Capacity	Remark
Whole memory area	25MB	Whole memory capacity
Program Memory	3MB	Include Upload
System Memory	4MB	System data and parameter area
Data Memory	2MB	Device memory, Flag, System area
Flash Memory	16MB	For flash operation mode

The storage capacity and data area type of the program memory are as follows.

5.5.2 Data memory

Γ

The storage capacity and data area type of the data memory are as follows.

Item(area)		Capacity
Whole	data memory area	2MB
S	System area :	
•	I/O data table	770KB
• F0	orcible I/O table	TTORB
• [Reserved area	
	System flag	4KB
	Analogue image flag	32KB
Flag area	PID flag	16KB
	High speed link flag	22KB
	P2P flag	42KB
Inpu	t image area(%I)	16KB
Outpu	it image area(%Q)	16KB
R area(%R)		128KB
Direct parameter area(%M)		256KB
Symbolic parameter area(max.)		512KB
Stack area		256KB

5.5.3 Data retain area setting

If the data necessary for operation or the data that occur during operation are to be kept for use even when the PLC stops and resumes operation, the default(auto.) parameter retain is to be used. Alternatively, a part of the M area device may be used as the retain area by parameter setting.

Device	Retain setting	Feature
Auto variable	User-defined	Retain settable if adding a parameter to the auto parameter area
M	User-defined	Retain settable into internal contact area by parameter
K(PID)	Х	Contact that is kept as contact status in case of interrupt
F	Х	System flag area
U	Not retained	Analogue data register (retain not settable)
1	Not retained	High speed link/P2P service status contact of communication
L	(V1.1 or above)	module(retained)
N	Х	P2P service address area of communication module(retained)
R	Х	Exclusive flash memory area(retained)
W	Х	Exclusive flash memory area(retained)

The following table summarizes the features of retain settable device.

Note

- (1) K, L, N and R devices are basically retained.
- (2) K, L and N devices can be deleted in the memory deletion window of PLC deletion, an online menu of XG5000.
- (3) For details of directions, please refer to the 'Online' in the user's manual of XG5000.

(1) Data initialization by restart mode

There are 3 restart mode related parameters; default, initialization and retain parameter and the initialization methods of each parameter are as follows in the restart mode.

Mode Parameter	Cold	Warm
Default	Initializing as '0'	Initializing as '0'
Retain	Initializing as '0'	Maintaining the previous value
Initialization	Initializing as a user-defined value	Initializing as a user-defined value
Retain & initialization	Initializing as a user-defined value	Maintaining the previous value

(2) Operation in the data retain area

Retain data can be deleted as follows.

- D.CLR switch of the CPU module
- RESET switch of the CPU module (3 seconds and longer: Overall Reset)
- RESET by XG5000 (Overall Reset)
- Deleting memory at STOP mode by XG5000
- Writing by a program (recommending the initialization program)
- Writing '0' FILL and etc at XG5000 monitor mode

D.CLR clear does not work at RUN mode. To do it, after make sure to change to STOP mode. In addition, the default area can be also initialized when clearing by D.CLR switch.

When instantaneously operating D.CLR, the only retain area is deleted. If maintaining D.CLR for 3 seconds, 6 LEDs blink and at the moment, if the switch returns, even R area data are also deleted.

For the maintenance or reset(clear) of the retain area data according to the PLC operation, refer to the following table.

Item	Retain	M area retain	R area
Reset	Maintaining the previous value	Maintaining the previous value	Maintaining the previous value
Over all reset	Initializing as '0'	Initializing as '0'	Maintaining the previous value
DCLR	Initializing as '0'	Initializing as '0'	Maintaining the previous value
DCLR (3sec)	Initializing as '0'	Initializing as '0'	Initializing as '0'
STOP→RUN	Maintaining the previous value	Maintaining the previous value	Maintaining the previous value

When STOP->RUN, in case it is set as Cold Restart, Retain Auto variable is initialized

In case it is set as Warm Restart, Retain Auto variable is maintained.

Note

The terms and definitions for 3 types of variables are as follows.

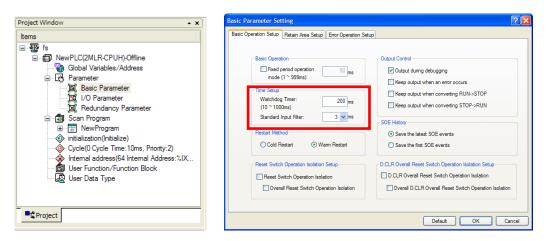
- (1) Default variable: a variable not set to maintain the initial/previous value
- (2) Initialization(INIT) variable: a variable set to maintain the initial value
- (3) Retain variable: a variable set to maintain the previous value

(3) Data initialization

Every device memory is cleared up as '0' at the status of memory deletion. The data value may be assigned initially depending on a system and at the moment, the initialization task should be used.

Γ

Chapter 6 CPU Module Functions


6.1 Self-diagnosis Function

- (1) The self-diagnostic is the function that the CPU module diagnoses any trouble of the PLC system.
- (2) It detects any trouble when turning on the PLC system or any trouble is found during the operation, avoid the system from malfunctioning and taking preventive measures.

6.1.1 Scan watchdog timer

WDT(Watchdog Timer) is the function to detect any program runaway resulting from abnormal hardware/software of PLC CPU module.

(1) WDT is a timer used to detect an operation delay from abnormal user program. It can be set in the basic parameter of XG5000.

- (2) WDT monitors any scan overtime during operation and if it detects any overtime delay, it immediately suspends the PLC operation and turns off every output.
- (3) If it is expected that programming a specific part(using FOR ~ NEXT command, CALL command and etc) may have an overtime delay of scan watchdog timer while executing a user program, you can clear the timer by using 'WDT' command. The 'WDT' command restarts from 0 by initializing the overtime delay of scan watchdog time(for the details of WDT command, please refer to the chapter about commands in the manual).
- (4) To release a watchdog error, turn it on again, operate manual reset switch or change the mode to STOP mode.

WDT Count (ms) ⁰ 1 2 3	···8 9 0 1 2 ···	01267	012
WDT Reset	Scan END	Executing WDT Sca	n END

Γ

(1) The setting range of the watchdog timer is 1 ~ 999ms(1ms step), and the initial value is 200ms.
(2) If the cycle is set too short, scan watchdog time error may occur if the scan time is elongated by communication traffic overload, etc. It is recommended to set the cycle sufficiently longer that _SCAN_MAX

6.1.2 I/O Module Check Function

This function checks the I/O module when entering Run mode or during PLC operation

- (1) When entering Run mode, check if a module disagrees with the parameter setting or in failure (E030)
- (2) Check if the I/O module is isolated or failed during operation (E031)

If an abnormality is detected, the error indicator lamp (ERR LED) turns on, error number is indicated on the status indicator, and the CPU stops operation.

6.1.3 Battery level check

The function monitors battery level and detects, if any, low battery level, warning a user of it. At the moment, the warning lamp (BAT) on the front of the CPU module is On. For the details of measures, please refer to "4.3.3 Battery Life".

6.1.4 Saving error log

The CPU module logs, if any, errors so that a user can easily analyze the error and take corrective measures.

It saves each error code to the flag area.

Note

The results of self-diagnostic check are logged in the flag area. For the details of self-diagnostic and troubleshooting against errors, please refer to 14.5 Error Codes List during CPU Operation of Chapter 13. Troubleshooting.

6.1.5 Troubleshooting

(1) Types of trouble

A trouble occurs mainly by the breakage of PLC, system configuration error and abnormal operation results. 'Trouble' can be categorized by 'heavy fault mode' at which the system stops for the purpose of the system safety and 'light fault mode' at which the system warns a user of a trouble and resumes operation.

The PLC system may have a trouble by the following causes.

- Trouble in the PLC hardware
- System configuration error
- Operation error while a user program is operating
- Error detection resulting from a fault external device

(2) Operation mode when a trouble is found

If a trouble is detected, the PLC system logs the trouble message and stops or resumes operation depending on a trouble mode.

(a) Trouble in the PLC hardware

If heavy fault that the PLC may not properly work, such as CPU module, power module and others occurs, the system stops. However, the system resumes operation in case of light fault such as abnormal battery.

(b) System configuration error

It occurs when the hardware structure of PLC is not same as defined in the software. At the moment, the system stops. This occurs at module type disagreement error, module isolated error, or when the I/O mounted on the PLC differs from the I/O set up in the XG5000.

(c) Operation error while a user program is operating

In case of numerical operation error as a trouble occurring while a user program is operating, error flag(_ERR) and error latch flag(_LER) are displayed and the system resumes operation. If an operation time exceeds the overtime delay limit or the built-in I/O module is not controlled, the system stops.

Note

Error latch flag is maintained as long during a scan program if an error occurs in scan program. Every time a command is executed, error flag is cleared and set just after a command generating an error is executed.

(d) Error detection resulting from a fault external device

It detects a fault of external device; in case of heavy fault, the system stops while it just displays a fault of the device and keeps operating in case of light fault.

Note

- (1) If a fault occurs, the fault number is saved into the flag(_ANNUM_ER).
- (2) If light fault is detected, the fault number is saved into the flag(_ANNUM_WAR).
- (3) For further information about the flags, please refer to Appendix 1. Flags List.
- (5) Error detection in redundant operation

Nonconformity of redundancy parameter is detected by the redundancy parameter error flag (_DUPL_PRM_ER), and data communication error during redundant operation is detected by the redundancy synchronization error flag (_DUPL_SYNC_ERR). If an error occurs, the system stops. In addition, the status information on the current redundancy system configuration is provided with the redundancy Configuration warning error flag (_REDUN_WAR). If this error is detected, the system displays the status but continues operation.

6.2 Clock Function

The CPU module contains a clock element (RTC), which operates by the backup battery even in case of power-off or instantaneous interruption.

By using the clock data of RTC, the time control for the operation or trouble logs of the system is available. The present time of RTC is updated to the clock-related F device per scan.

(1) Read from XG5000/Setting

Click 'PLC RTC' in the online mode, 'PLC Information.'

LC Information - N	
CPU Performance	Password PLC RTC
State	
PLC RTC is set	
Date	Time
2008-03-14	\$ 22 10:09:01 €
	Synchronize PLC with PC clock
	Send to PLC
	Send to FEC
	Close

It displays the time from the PLC RTC. If it displays the present time incorrectly, a user can fix it up by transferring the right time after manually setting the time or performing "Synchronize PLC with PC clock" method to transmit the time of PC clock connected to the PLC.

(2) Clock reading by Flag

Flags	Examples	Size	F area	Description
_RTC_TIME[0]	16#08	BYTE	%FB12	Current time [year, last two digits]
_RTC_TIME[1]	16#02	BYTE	%FB13	Current time [Month]
_RTC_TIME[2]	16#23	BYTE	%FB14	Current time [Date]
_RTC_TIME[3]	16#14	BYTE	%FB15	Current time [Hour]
_RTC_TIME[4]	16#16	BYTE	%FB16	Current time [Minute]
_RTC_TIME[5]	16#17	BYTE	%FB17	Current time [Second]
_RTC_TIME[6]	16#06	BYTE	%FB18	Current time[day]
_RTC_TIME[7]	16#20	BYTE	%FB19	Current time [hundred year]

It can be monitored by flags as follows.

(3) Clock data modified by program

A user also can set the value of clock by using a program. It is used when setting the time manually by external digital switches or creating a system to calibrate a clock periodically on network.

Input a value into the below flag area and use the '_RTC_TIME_USER' function block. The time data is updated in scan END.

Flags	Examples	Size	F area	Description
_RTC_TIME_USER[0]	16#08	BYTE	%FB3860	Current time [year, last two digits]
_RTC_TIME_USER [1]	16#02	BYTE	%FB3861	Current time [Month]
_RTC_TIME_USER [2]	16#23	BYTE	%FB3862	Current time [Date]
_RTC_TIME_USER [3]	16#14	BYTE	%FB3863	Current time [Hour]
_RTC_TIME_USER [4]	16#16	BYTE	%FB3864	Current time [Minute]
_RTC_TIME_USER [5]	16#17	BYTE	%FB3865	Current time [Second]
_RTC_TIME_USER [6]	16#06	BYTE	%FB3866	Current time[day]
_RTC_TIME_USER [7]	16#20	BYTE	%FB3867	Current time [hundred year]

Alternatively, instead of using function blocks, it is also possible to enter clock data into the above area and turn on '_RTC_WR' in order to input the time.

- (a) No input is allowed unless time data is entered in a right format (However, even if the day of the week data is not correct, it is set without error detected)
- (b) After writing the clock data, check whether it is rightly set by monitoring Reading Clock device.

(4) How to express the day of the week

Number	0	1	2	3	4	5	6
Day	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday

(5) Time error

Γ

The error of RTC varies depending on the operating temperature. The following table shows the time error for a day.

Operating temp.	Max. error (sec/date)	Ordinary (sec/date)
0°C	- 4.67 ~ 1.38	-1.46
25 °C	- 1.64 ~ 2.42	0.43
55 °C	- 5.79 ~ 0.78	-2.29

- (1) Initially, RTC may not have any clock data.
- (2) When using the CPU module, first make sure to set the accurate clock data.
- (3) If any data out of the clock data range is written into RTC, it does not work properly.
- i.e.) 14M 32D 25H

(4) RTC may stop or have an error due to abnormal battery and other causes. The error is released if a new clock data is written.

(5) For further information of how to modify the clock data, please refer to the description of XGI commands(6) In the sybchronization of the master and backu CPUs, time difference may occur between the master and backup.

6.3 Remote Function

The operation mode of the CPU can be changed by communication, in addition to the key switch on the module. For remote operation, set the key switch of the CPU module to REM (remote) position>

(1) Types of remote operation

- (a) Operation by connecting to XG5000 via USB or RS-232C port installed on the CPU module
- (b) Operate by connecting XG5000 via the USB port on the expansion drive module
- (c) Other PLC networked on the PLC can be controlled with the CPU module connected to XG5000.
- (d) The PLC operation is controlled by HMI software and other applications through the dedicated communication.

(2) Remote RUN/STOP

- (a) Remote RUN/STOP is the function to execute RUN/STOP remotely with the dip switch of the CPU module set to REMOTE and the RUN/STOP switch set to STOP.
- (b) It is a very convenient function when the CPU module is located in a place hard to control or in case the CPU module is to run/stop from the outside.

(3) DEBUG

- (a) DEBUG is the function to control DEBUG with the dip switch of the CPU module set to REMOTE and RUN/STOP switch set to STOP.
- (b) It is a very convenient function when checking program execution status or data in the debugging operation of the system.

(4) Remote Reset

- (a) Remote reset is the function to reset the CPU module remotely in case an error occurs in a place not to directly control the CPU module.
- (b) Like the switch control, it supports 'Reset' and 'Overall Reset.'

Note

For the further information about remote functions, please refer to the 'Online' part in the user's manual of XG5000.

(5) Flash memory operation mode

(a) What is the flash operation mode? It means that the system operates by the backup program in flash in case the program in ram is damaged. If selecting "Flash Memory Operation Mode", it starts operation after program in flash moves to the program memory of the CPU module when the operation mode is changed from other mode to RUN mode or when restarting.

(b) Flash Memory Operation Mode Setting

Γ

Check the operation mode setting by using 'Online \rightarrow Set Flash Memory ... \rightarrow 'Enable flash memory run mode' and click 'OK. '

Once pressing it, it shows a dialogue box stating "Saving flash memory program ..." and copies the program from user program area to flash.

State Type: Internal 16MB flash memory Disable flash memory operation mode Select © Enable flash memory run mode © Disable flash memory run mode Info. Always copies (backup) the program to PLC flash memory after program download or online editing. Also copies the program to flash memory when this dialog is closed. OK Cancel
Disable flash memory operation mode Select © Enable flash memory run mode © Disable flash memory run mode Info. Always copies (backup) the program to PLC flash memory after program download or online editing. Also copies the program to flash memory when this dialog is closed.
Select
Enable flash memory run mode Disable flash memory run mode Info. Always copies (backup) the program to PLC flash memory after program download or online editing. Also copies the program to flash memory when this dialog is closed.
Disable flash memory run mode Info. Always copies (backup) the program to PLC flash memory after program download or online editing. Also copies the program to flash memory when this dialog is closed.
Info. Always copies (backup) the program to PLC flash memory after program download or online editing. Also copies the program to flash memory when this dialog is closed.
Always copies (backup) the program to PLC flash memory after program download or online editing. Also copies the program to flash memory when this dialog is closed.
memory after program download or online editing. Also copies the program to flash memory when this dialog is closed.
OK Cancel
; flash memory program

∴ Caution
(1) The default is 'Flash Memory Operation Mode deselected'.
(2) Flash memory operation mode is maintained as 'On' as long as it is not 'Off' by XG5000.
(3) Flash memory operation mode can be changed, irrespective of RUN/STOP mode.
(4) Flash memory operation mode can be set by the online menu of XG5000 when executing flash 'operation mode setting' after program debugging is complete with the flash memory operation mode off.
(5) If modifying during RUN with 'flash memory operation mode' set, the changed program may be applied only when it restarts as long as the program is successfully written in flash memory. Note that if the PLC restarts before a program is saved into flash memory, a program that is saved in advance, instead of the changed program, works.
(6) If flash memory operation mode is changed from 'disabled' to 'enable', flash memory operation mode is applied as long as the flash memory writing is complete. In case the PLC restarts before completing program writing, "Flash memory operation mode" is released.

(c) Flash memory operation method

If restarting the PLC system or changing its operation mode to RUN, it works as follows depending on the flash operation mode setting.

٦

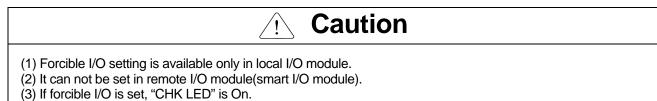
Flash memory operation mode setting	Description
On	If program memory data are damaged because flash memory and program memory are different or battery voltage is low, it downloads the program saved in flash memory to program memory.
Off	CPU understands that flash memory does not have any program and operates by the program saved in RAM.

6.4 Forced On/Off Function of I/O

The forcible I/O function is used to forcibly turn on or off I/O area, irrespective of program execution results.

6.4.1 Force I/O Setting

Γ


(1) Click [Online]-[Force I/O] on XG5000.

Forced I/O Setup Move address Base: 0 🗸 Slot:	0 💌	Forced input: Forced output	○ Enable Oisable t: ○ Enable Oisable	? ×
Force I/O %IW0.0.0 Flag	%lW0.0.1 ag Data	%IW0.0.2 Flag Data	%IW0.0.3 Flag ⊡ Data	Setting device list
	6 0 1 16 7 0 1 17 8 1 18 9 19	32 0 32 33 0 33 34 0 34 35 35	48 • 48 49 • 49 50 • 50 51 • 50 51 • 51	
	20 0 20 21 0 21 22 0 22 23 0 2 23	36 0 1 36 37 0 3 7 38 0 1 38 39 0 1 38	52 0 1 52 53 0 53 54 0 54 55 0 55	
9 0 1 9 2 10 1 10 2	24 () 24 25 () 25 26 () 26 27 () 27	40 • 40 41 • 41 42 • 42 43 • 43	56 🔍 🛄 56 57 🔍 🛄 57 58 🔍 🛄 58 59 🔍 🛄 59	
13 0 1 13 2 14 0 1 14 3	28 • 28 29 • 29 20 • 30 21 • 31	44 0 4 4 45 1 45 46 1 46 47 1 47	60 🕢 📕 60 61 🔍 📕 61 62 🔍 📕 62 63 🔍 📕 63	Delete
🧧 Flag 📃 Input 🥥 Outpu	ut <u>V</u> ariab	les <u>D</u> elete All	Select <u>A</u> ll OK	Cancel

(a) To set forcible I/O, select the flag of a contact to set and the data checkbox

- (b) To set "1", select the flag and data of a bit and then, select a flag.(c) To set "0", select a flag only, not the data corresponding to the bit.
- (d) If selecting 'forcible input or output enabled', the setting is applied and it works accordingly.

For further directions, please refer to the user's manual of XG5000.

(4) The forcible I/O set by a user is maintained even though a new program is downloaded.

6.4.2 The point of time of method of forced On/Off process

(1) Forcible input

'Input' replaces the data of a contact set by Forcible On/Off from the data read from input module at the time of input refresh with the forcibly set data and updates input image area. Therefore, a user program can execute operation with actual input data and forcibly set data.

(2) Forcible output

'Output' replaces the data of a contact set by Forcible On/Off from the output image area data containing operation result at the time of output refresh with the forcibly set data and outputs to an output module after completing user program operation. Unlike input, the data in output image area is not changed by forcible On/Off setting.

Caution

Cautions for using forcible I/O

(1) It works from the time when input/output are set to 'enable/disable' respectively after setting forcible data.

- (2) Forcible input can be set even though actual I/O module is not installed.
- (3) The previously set On/Off setting data are kept in the CPU module, despite of power off → on, operation mode change, program download or manipulation by reset key. However, it is deleted if overall reset is executed.

(4) Forcible I/O data are not deleted even in STOP mode.

(5) To set new data from the first, release every setting of I/O by using 'overall reset'.

6.5 Operation history saving function

There are four types of operation logs; Error log, Mode change log, shut down log and System log. It saves the time, frequency and operation of each event into memory and a user can conveniently monitor them through XG5000. Operation log is saved within the PLC unless it is deleted by XG5000.

6.5.1 Error history

It saves error log that occurs during operation.

- (1) Saving error code, date, time and error details.
- (2) Saving logs up to 2,048
- (3) Automatically released if memory backup is failed due to low battery level and etc

6.5.2 Mode change history

It saves the change mode information and time if an operation mode is changed.

- (1) Saving the date, time and mode change information.
- (2) Saving up to 1,024.

6.5.3 Shut down history

Saving power On/Off data with it's time data.

- (1) Saving On/Off data, date and time.
- (2) Saving up to 1,024.
- (3) History of master and standby power is indicated respectively.

6.5.4 System history

It saves the operation log of system that occurs during operation.

- (1) Saving the date, time and operation changes
- (2) XG5000 operation data, key switch change information
- (3) Instantaneous interruption data and network operation
- (4) Saving up to 2,048

PLC histo	y - NewPLO	c		? 🔀
Error Log	Mode Log	Shut down Log	System Log	
Index	Date	Time	Contents	~
🖾 44	2069-12-31	25:04:09.347	Overall reset, XG5000	
i 🖾 45	2069-12-31	25:04:09.385	RS-232C, OK, Connect	
🖾 4 6	2069-12-31	25:04:09.201	Write, Basic parameter	
🖾 47	2069-12-31	25:04:09.681	Write, I/O parameter	
🖾 48	2069-12-31	25:04:09.462	Write, Program	
i 🖾 49	2069-12-31	25:04:09.208	Write, Basic parameter	
50	2069-12-31		Write, I/O parameter	
i≊ 51	2069-12-31	25:04:09.485	Write, Program	
i≊ 52	2007-05-16		RS-232C, OK, Disconnect	
i⊠ 53 i⊠ 54	2007-05-16	15:38:30.896	RS-232C, OK, Connect	
⊠ 54 ⊠ 55	2007-05-16 2007-05-16	15:44:22.882 15:44:28.643	Momently shut-down	
⊠ 55	2007-05-16		Momently shut-down RS-232C, OK, Connect	
i≊ 57	2007-05-16		Copies data to flash memory, Start	=
i≊ 58	2005-05-16	15:58:02.148	Copies data to flash memory, End	
\$ 59	2005-05-16	15:58:02.525	Flash memory run mode, Enable	
				×
<				>
				<u>C</u> lear
			Read <u>A</u> ll <u>S</u> ave	Close

Note

(1) The saved data are not deleted before it is deleted by selecting a menu in XG5000.

(2) If executing Read All in case logs are more than 100, the previous logs are displayed.

6.6 External device failure diagnosis function

It is the flag that a user detects a fault of external device so that the suspension/warning of a system could be easily realized. If using the flag, it can display a fault of external device, instead of creating a complex program and monitor a fault position without XG5000 and source program.

- (1) Detection/classification of external device fault
 - (a) The fault of external device is detected by a user program and it can be divided into heavy fault(error) that requires stopping the PLC operation and light fault(warning) that only displays fault status while it keeps operating.
 - (b) Heavy fault uses '_ANC_ERR' flag and light fault uses '_ANC_WB' flag.
- (2) If a heavy fault of external device is detected
 - (a) If a heavy fault of external device is detected in a user program, it writes the value according to error type defined in a system flag, '_ANC_ERR' by a user. Then, with _CHK_ANC_ERR flag On, it checks at the completion of a scan program. At the moment, if a fault is displayed, it is displayed in '_ANNUN_ER' of '_CNF_ER', which is the representative error flag. Then, the PLC turns off every output module(depending on the output control setting of basic parameter) and it has the same error status with PLC fault detection. At the moment, P.S LED and CHK LED are On, besides ERR LED.
 - (b) In case of a fault, a user can check the cause by using XG5000 and alternatively, check it by monitoring '_ANC_ERR' flag.
 - (c) To turn off ERR LED, P.S LED and CHK LED, which are On by heavy fault error flag of external device, it is necessary to reset the PLC or turn it off and on again.

Example

_	error_detecti	MO EN	IVE ENO					_CHK_ANC_ ERR
	34 -	IN	ООТ	ANC_ERR				

(3) If a light fault of external device is detected

- (a) If a light fault of external device is detected in a user program, it writes the value according to warning type defined in '_ANC_WAR' by a user. Then, with _CHK_ANC_WAR On, it checks at the completion of a scan program. At the moment, if a warning is displayed, '_ANNUN_WAR' of '_CNF_WAR', which is the representative error flag of system is On. At the moment, P.S LED and CHK LED are On.
- (b) If a warning occurs, a user can check the causes by using XG5000. Alternatively, a user can check the causes by directly monitoring '_ANC_WAR' flag.
- (c) With _CHK_ANC_WAR OFF, P.S LED and CHK LED are off and the display, '_ANNUN_WAR' of '_CNF_WAR' is reset.

Example

low_fault_det ekton	MOVE EN ENO					_CHK_ANC_ WAR
20	IN OUT	ANC_WAR				

6.7 Redundancy system operation setting

For redundant system operation, redundancy parameters have to be set up.

Redundanct parameter configuration classified into the operation mode setting and data synchronization area setting.

The default setting has no data synchronization area. Be careful that, if the data synchronization area is not set up, the data of the master CPU is not synchronized to the standby CPU.

	etup FEnet					
Hot Swapping	Ontion					
Base						
Module						
Extended Base Power Failure Setup						
Restart and wait						
O Base powe	r failure error					
Warning Optio	n					
		e power operation				
_						
Disable warning for ring topology						
Disable wa	ming for ring t	opology				
_		· -				
Disable wa	ming for single	e CPU mode				
_	ming for single	e CPU mode				
Disable wa	ming for single ming for fault i	e CPU mode mask removal				
Disable wa	ming for single ming for fault i Synchronizatio	n Area				
Disable wa ☑ Disable wa Redundancy S	ming for single ming for fault i Gynchronizatio	a CPU mode mask removal n Area Start	End			
Disable wa Disable wa Redundancy S	ming for single ming for fault i Synchronizatio	n Area	31			
Disable wa Disable wa Redundancy \$ I/0 Base M Area	ming for single ming for fault i Synchronizatio	a CPU mode mask removal n Area Start 0 %MD0	31 %MD999			
Disable wa Disable wa Redundancy S I/O Base M Area R Area	ming for single ming for fault i Synchronizatio	a CPU mode mask removal n Area Start 0 %MD0 %RD0 %RD0	31 %MD999 %RD999			
Disable wa Disable wa disable wa Redundancy S I/0 Base M Area R Area W Area	ming for single ming for fault I Synchronizatio	a CPU mode mask removal n Area Start 0 %MD0 %MD0 %MD0 %MD0 %MD0 %MD0 %MD0 %M	31 %MD999 %RD999 %WD999/%WD17383			
Disable wa Disable wa disable wa Redundancy S I/0 Base M Area R Area W Area	ming for single ming for fault i Synchronizatio	a CPU mode mask removal n Area Start 0 %MD0 %RD0 %RD0	31 %MD999 %RD999			
Disable wa Disable wa Redundancy S I/O Base M Area R Area	ming for single ming for fault I Synchronizatio	a CPU mode mask removal n Area Start 0 %MD0 %MD0 %MD0 %MD0 %MD0 %MD0 %MD0 %M	31 %MD999 %RD999 %WD999/%WD17383			
Disable wa Disable wa Redundancy S I/O Base M Área R Área W Área PID Block	ming for single ming for fault I Synchronizatio	CPU mode mask removal n Area Start 2xD00 2xPD0 2xPD0 2xWD0/2xWD16384 0	31 %MD999 %RD999 %WD999/%WD17383 0			

Different from other parameters, the dredundancy parameters can be written during running.

However, the redundancy parameters cannot be automatically dpwnloaded during running writing. From the XG5000 online writing, select the redundancy parameters only and download them.

6.7.1 Operation mode setting

(1) Single CPU operation mode

If the system is operation with master CPU only, without standby, redundancy system configuration warning occurs. To configure XGR system with a single CPU, select the 'Disable the warning message for Single CPU Mode' check box to prevent the warning display.

	tun EEnst	I/F Operation Setup				
	tup renet	I/F Operation Setup				
Hot Swapping C	Option					
Base						
Module						
Module						
Extended Base Power Failure Setup						
Restart and wait						
O Base power	failure error					
Warning Option						
Disable warr	ning for singl	e power operation				
Disable warr	ning for ring t	topology				
Disable warning for ring topology						
Disable war	ving for singl	e CPU mode				
_		e CPU mode				
_						
Disable warr	ning for fault	mask removal				
Disable warr	ning for fault	mask removal				
Disable warr Redundancy Sy	ning for fault mchronizatio	mask removal	End			
Disable warr Redundancy Sy I/O Base	ning for fault	mask removal	31			
Disable warr Redundancy Sy I/O Base M Area	ning for fault mchronization Used	mask removal on Area 0 %MD0	31 %MD999			
Disable warr Redundancy Sy I/O Base M Area R Area	ning for fault	n Area Start 0 2MD0 %RD0	31 %MD999 %RD999			
Disable warr Redundancy Sy I/O Base M Area R Area W Area	Ining for fault	mask removal Start 0 %HD0 %HD0 %WD0/%WD16384	31 %MD999 %RD999 %WD999/%WD17383			
Disable warr Redundancy Sy I/0 Base M Area R Area W Area	ning for fault	n Area Start 0 2MD0 %RD0	31 %MD999 %RD999			
_	Ining for fault	mask removal Start 0 %HD0 %HD0 %WD0/%WD16384	31 %MD999 %RD999 %WD999/%WD17383			

Caution

It is recommended to configure the XGR system in redundant CPU system. If the redundant system is configured with single CPU, the system stops if the CPU module fails. To prevent system interruption, set up the system in redundant CPU configuration

(2) Error handling in power cut-off of expansion base

In a redundant XGR system configured wuth multiple extensin bases for enhanced system reliability and diversity, in case of detach (powr off) of expansion base(s), the user can select whether to consider it as error or CPU restarts the system and watis until exension base in problem paricipate in operation again.

dundancy Par	ameter Se	etting	X				
asic Operation Se	tup FEnet	I/F Operation Setup					
- Hot Swapping Option							
Base							
Module							
Extended Base Power Failure Setup							
Restart and wait							
O Base power failure error							
O batto ponto.							
-Warning Option							
Disable warr	ning for single	e power operation					
Disable warr	ning for ring t	opology					
_							
Disable warr	ning for single	e CPU mode					
Disable warr	ning for fault i	mask removal					
- Redundancy Sy	nchronizatio/	n Area					
	Used	Start	End				
1/O Base		0	31				
M Area		%MD0	%MD999				
R Area		%RD0	%RD999				
W Area	<u> </u>	%WD0/%WD16384	2/WD999/2/WD17383				
PID Block		0	0				
<			>				
		Defau	It OK Cancel				
		- Dorida					

a) If the check box "Restart and wait" is selected;

As the default setting, in case of a problem in an expansion base, the system is restarted and the CPU module waits until the base in failure is normalized. The base in failure is indicated with "Ebxx" in the CPU indicator panel.

When the failed base is restarted normally and returns to the system, the CPU module restarts in the same manner as the initial start-up and carry out normal operation.

b) If the check box "Extended Base Detach Error" is selected;

In case of failure of an expansion base, other modules operate in accordance with the error process setting in the basic parameter settings.

If the basic parameter was set to maintain output under error occurrence, other modules maintain the last output.

ic Operation Setup	Retain Area Setup	Error Operation Setup	
Time Setup Watchdog (10 ~ 100	operiod operation (1 ~ 999ms); g Timer: (0ms) (100ms)	50 ms 200 ms 3 v ms	Output Control Output during debugging Keep output when an error occurs Keep output when converting RUN->STOP Keep output when converting STOP->RUN SOE History SoE History Save the latest SOE events Save the first SOE events
Reset S	Reset Switch Operation Isolation Setup		D.CLR Overall Reset Switch Operation Isolation Setup D.CLR Overall Reset Switch Operation Isolation Overall D.CLR Overall Reset Switch Operation Isolation

6.7.2 Data synchronization area setting

(1) M area setting

Setting can be made by 1 kbyte step within 1 ~ 256 kByte range. Initial value: %MW0~%MW2000 Change in Start End method

(2) I/Q : setting by base unit

Setting can be made in base unit. Initial value is 31 bases (error message if the setting value is less than the number of installed bases)

(3) PID : setting by block (max. 8 blocks)

For the synchronization area of the PID area, 32 PID areas are allocated for each block

- Initial value: 0 block

(4) R(W) : set R only, and automatic setting for W

Synchronization area for R(W) area

- Initial value: %RW0~%RW2000(%WW0~%WW2000, %WW32768~%WW34768)

Caution

- (1) The M area retain can be set up in the "Basic Parameter Setting." For details, see "5.5.3 Data Retain Area Setting."
- (2) When the master/standby CPUs are performing redundant operation, followings are automatically synchronized.
 - (a) L (high speed link flag), N(P2P parameter setting) device area
 - (b) F (system flag area) device area (however, individual flag areas are not synchronized).
 - (c) U (special module refresh area) device area (however, only installed modules are synchronized).
- (3) If a variable value has been changed during monitoring by XG5000, it applies to the respective areas of the master and standby CPUs, regardless of the data synchronization area setting.

6.8 Setting operation of communication

Here you can set operation when FEnet module's cable is disconnected. According to setting, master CPU and Standby CPU are switchted automatically when FEnet module is disconnected.

Redundancy Parameter Setting	
Basic Operation Setup FEnet I/F Operation Setup	
Switching condition Switching condition Disconnection of the cable	
O Disconnection of the server connection	
Setting Operation for Disconnection to Client Automatic switchover (redundancy operation)	

6.8.1 Automatic master switchover

(1) Automatic master switchover setting

When the cable of FEnet set as server or server connection is disconnected, you have to check the Automatic switchover for automatic master switchover. This setting is applied in case of redundancy operation

(2) Detail option

Here sets the condition for automatic master switchover through detail option. This means setting the group for each FEnet module installed at main base. Each module can be set as same group or not. When automatic master switchove setting and detail option setting is done, if the following two conditions are met, master switchove occurs.

- (a) All master base FEnet module belonging to one group are disconnected and
- (b) At least one standby base FEnet module belonging to the above group is under normal connection status

For example, In case you set slot 1 and slot 2 as group 1, slot 3 and slo4 as group 2 and slot 5 as group3, master switchover occurs under the following three conditions. (We assumes that FEnet modules on standby base are normal connection status)

- (a) Slot 1 and slot 2 are disconnected or
- (b) Slot3 and slot4 are disconnected or
- (c) Slot 5 is disconnected

(3) Adding switchover condition items

- -Cable disconnection: When the cable (media) is disconnected at the FEnet module, switchover is done within 1s by updating the flag instantly.
- Server disconnection: through the cable (media) is disconnected at the FEnet module, switchover is not done during connection wait time.

(But, when connection wait time is set as more than 5s, switchover is done within max. 6s)

6.8.2 Global status variable

After installing FEnet module, you can check the server connection status of FEnet module and physical cable connection status through Global variable at XG5000. In order to monitor global variable, register relevant variable at Variable Monitoring Window after executing [Edit]-[Register Special/Communication Module Variable] in XG5000. And these variables can be used at user program

	PLC	Program	Variable/Device	Value	Туре	Device/Variable	Comment
1	NewPLC	<global></global>	%LX60312	10	BOOL	_0001_LINKUP_INFO	FEnet : Link up/down information
2	NewPLC	<global></global>	%LW3774	HEX	WORD	_0001_SC_INFO	FEnet: Server connection state
3	•						

(1) Sever connection status variable

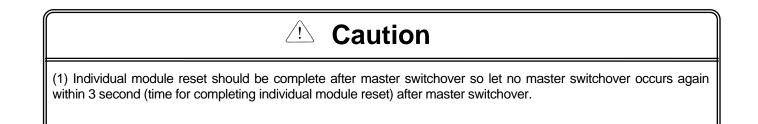
Sever connection status variable indicates connection status of each client connected to server. Each bit indicates each client status in order of connection to server and if bit is on, it is normal connection status. Each bit indicates status of each client in the order as connected and if it's ON, its normal connection.

(2) Link up/down information variable

Link up/down information variable indicates physical cable connection status of relevant FEnet module. If variable is on, it means normal connection and if variable is off, it means disconnection or detachment

6.8.3 ONE IP Solution

You can connect to the master base FEnet module of XGR redundancy system with one IP regardless of master switchover through One IP Solution. For this, in case of master switchover, master base FEnet module and standby FEnet module change each other's IP address


(1) IP setting

You set IP of FEnet module at standard setting window after registering FEnet module at XG-PD. If you check ONE IP Solution of standard setting window, ONE IP Solution function will be activated. Unlike when ONE IP Solution is not used, you can set only one IP address (For how to set IP address when ONE IP Solution is not activated, refer to FEnet user manual). When using ONE IP Solution, IP address should be even number. That IP address becomes IP address of master base FEnet module and master base FEnet module's IP address + 1 becomes IP address of standby base FEnet module

🔀 dgdg - XG-PD	Standard Settings	3
Eile Edit View Online EDS To	ONE IP Solution	
D ≥ 	TCP/IP settings Host table settings	
Project window	One IP	1
MewPLC(XGR_CPUH) Base00	HS link Station No.: 0	
유 00: FEnet 이 : FEnet 19 Base01	Media: AUTO(electric) 🗸	
Base01	IP address: 165 . 186 . 247 . 100	
Base03	Subnet mask: 255 . 255 . 0	
Base05	Gateway: 165 . 186 . 247 . 1	
Base06	DNS server: 0.0.0.1	
Base08		
Base09		
Base 10	Reception waiting time:	
Base 12	15 sec(2 · 255)	
Base 13 Base 14		
Standa A High-sp	No. of Dedicated Connections:	
all non-	3 (1 · 16)	
x	Driver(server) settings	
- Message wir	Driver: XGT server	
D - Mes	Modbus Settings	
Result Par		
Ready	OK Cancel	

(2) IP change

If you use ONE IP Solution, in case of master switchover caused by error, communication disconnection, master base and standby FEnet modules change each other's IP address. For this, after master switchover, individual module reset is conducted.

6.9 Fault Mask Function

6.9.1 Applications and operations

- (1) Fault mask helps a program keep operating even though a module is in trouble during operation. A module designated as fault mask normally works until a fault occurs.
- (2) If an error occurs on a module on which fault mask is set, the module stops working but the entire system keeps working.
- (3) If a fault occurs in a module during operation, the CPU module sets the error flag and "PS LED" on the front is "On." The error is displayed when accessing to XG5000.

6.9.2 Fault mask setting

- (1) Fault mask can be set by the online menu of XG5000. For the details, please refer to the user's manual of XG5000.
- (2) Fault mask setting by a program is not available. You can monitor the fault mask flag with program. (Refer to appendix1. flag list)

6.9.3 Releasing fault mask

Fault mask is released only by the following methods.

- (1) Releasing the setting in the online menu of XG5000
- (2) Releasing by overall reset
- (3) Automatically releasing in case memory backup is failed due to low battery level and other causes

Note that the fault mask is not released even in the following cases.

- (1) Power Off→On
- (2) Operation mode change
- (3) Program download
- (4) Reset key(released only when it is pressed for 3 seconds and longer)
- (5) Data clear

- (1) If releasing fault mask with error flag in the CPU module not cleared although the causes of an error are eliminated, the system stops. Please check the state of error flag before releasing fault mask flag.
- (2) To remove an error flag, release it after setting I/O skip in the respective module. For details, see [XG5000 online help desk >>I/O Skip.
- (3) In case of XGR-CPU V1.8 or above, if you don't set fault mask, warning message appears when connecting CPU via XG5000. In case of XGR-CPU V1.8 or above, "Warning for fault mask removal" option is added at Redundancy parameter.

6.10 I/O Module Skip Function

6.10.1 Applications and operations

During operation, the I/O module skip function excludes a designated module from the operation. For the designated module, the data update and fault diagnostics of I/O data stops as soon as being designated. It is available when temporarily operating it with the fault excluded.

6.10.2 Setting and processing I/O data

(1) It can be set at the unit of I/O module.

(For further information about setting, please refer to the user's manual of XG5000)

- (2) Input(I) image area suspends input refresh, so it maintains the value set before skip setting. However, even in the case, the image manipulation by forcible On/Off is still effective.
- (3) The actual output of output module is Off when setting the skip function but it changes depending on a user program's operation, irrespective of skip setting. After the skip setting, the output value of output module can not be controlled by forcible On/Off.
- (4) The skip function is identically executed even when using I/O function.

6.10.3 Releasing skip function

The I/O module skip function is released only by the method of setting.

- (1) Releasing by the online menu of XG5000
- (2) Releasing by overall reset
- (3) Automatically releasing in case memory backup is failed due to low battery level and other causes

Note that the fault mask is not released even in the following cases.

- (1) Power Off→On
 - (2) Operation mode change
 - (3) Program download
 - (4) Reset key(released only when it is pressed for 3 seconds and longer)
 - (5) Data clear

If any fault is found in a module when releasing the skip function, the system may stop. Before releasing the skip function, make sure to release the skip with fault mask set and check the operation of a module.

6.11 Base Skip Function

6.11.1 Purpose and outline of the operation

Base skip is the function to exclude the designated base from operation during an operation. The excluded base stops all functions from the skip. This function is useful to continue operation by excluding a failed base or replace the base.

6.11.2 Setting method

• This setting can be done for each base.

6.11.3 Releasing skip function

Base skip can be released by following methods only.

- Selecting XG5000's [Online >> I/O Skip Setting] menu
- Release by Overall Reset
- Automatic release at backup memory lost by battery voltage drop, etc.

Note that followings do not release the failure mask;

- power Off \rightarrow On,
- operation mode change,
- program download,
- reset key operation (however, released if pressed for 3 seconds or longer), and
- data clear

Caution

- (1) When expansion driver is detached, all modules in base are automatically initialized.
- (2) When expansion driver is detached, digital output module operates as set in Output control settings of Basic parameter.
- (3) When expansion driver is detached, analog output module operates as set in Output type setting
- (4) For more detail, refer to each module's user manual.

6.12 Module Replacement Function during Operation

A module can be replaced during operation in the redundant system. There are two methods. First, use "Hot swapping option" function of [table 5.1.4] redundancy parameter described in Chapter 5. Check the "How swapping option" and download only "Redundancy parameter" to PLC during RUN mode. Then replace base and module. Second, use "Online→Module changing wizard or Base changing wizard"

🔿 Warning
The special modules which can be normally replaced are A/D, D/A, TC, and RTD. HSC and APM modules can be replaced but the previous data cannot be maintained.
Some communication modules (XGL-PMEA, XGL-DMEA) can be connected as long as network is
set(using Sycon software).(1) When replacing a module, align the bottom of the base and the holding part of a module before inserting it. A wrong insertion may cause 'system down.'

Redundancy Parameter Setting				
Basic Operation Setup	FEnet I/F Operation Setup			
- Hot Swapping Option				
Base Module				

6.12.1 Module replacement in redundant system

CPU module, power module, I/O module, a certain special modules, and the base module can be replaced during redundant operation. For safety purpose, this Manual provides the methods using the Module Replacement Wizard, Base Replacement Wizard. And "Hot swapping option" in redundancy parameter is also available to replace the module.

6.12.2 Replacing I/O module in redundant system

To replace a module in the base in redundant operation, change the main base to backup operation status and cutoff the power. If the Module Replacement Wizard is used, the I/O and internal data of the module is lost. (If you use "Hot swapping option", you can change in RUN mode)

To replace a module, users can use XG5000's [Online >> Module Replacement Wizard] function. For details, see XG5000 User Manual [Online >> Module Replacement Wizard].

Replacement of the main base (base 0) using the XG5000's [Online >> Module Replacement Wizard] function is available only during single CPU operation.

Redundancy Parameter Setting		
Basic Operation Setup	FEnet I/F Operation Setup	
Hot Swapping Option	1	

6.12.3 Replacing base module in redundant system

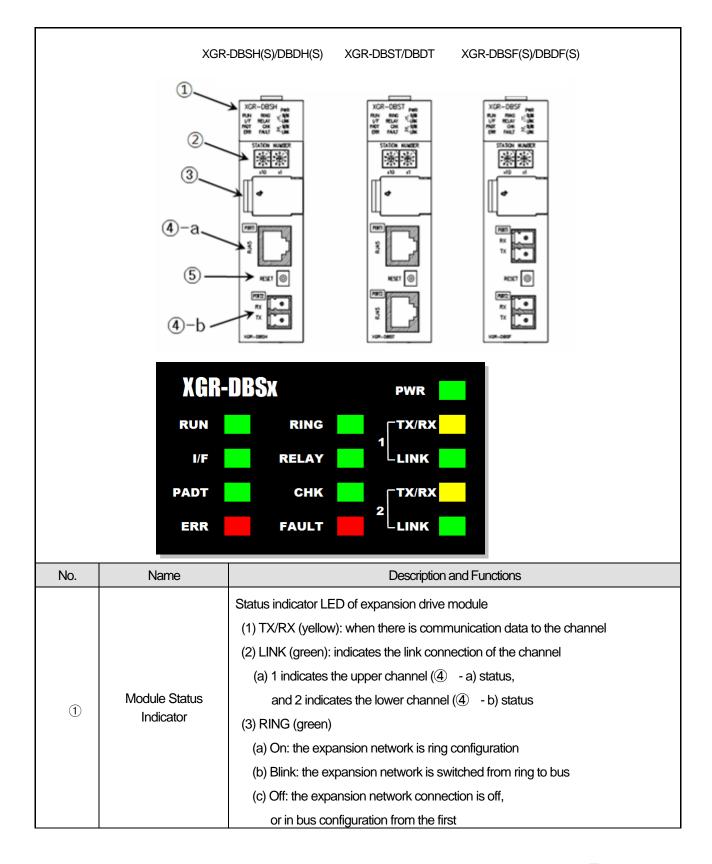
Bases can be replaced in redundant operation. For a line-configured system, the last base only can be replaced. For a ring-configured system, all the bases of the 1-31 bases which are participating in the operation can be replaced.

For safety purpose, this Manual provides XG5000's [Online >> Base Replacement Wizard] function. For further details, see XG5000 User Manual [Online >> Base Module Replacement Wizard]. (If you use "Hot swapping option", you can change in RUN mode)

In this process, only one base can be replaced at a time for safety reason.

The main base cannot be replaced during operation.

Ring configuration: available to change all extension bases


Line configuration: available to change last extension base because of line configuration

Chapter 7 Expansion Drive Module

7.1 Performance specifications

Items			Specification			
		100BASE-FX (multi)	100BASE-FX (single)	100BASE-TX		
	Transmission Method		Base band			
_	Max. Expansion distance between nodes	2km 15km 100m				
Transmission Specification	Max. Number of nodes		31			
ansm becific	Max. Protocol size		1,516 byte			
Ë S	Communication access method		CSMA/CD			
	Frame error check method	CRC	$x^{32} = X^{32} + X^{26} + X^{23} +, +$	X²+X+1		
	Cable	Multi Mode Fiber Single Mode Fiber FTP / STP / SFT				
io	Transmission speed	100Mbps				
Communication Media	Flow control	Full Duplex				
Comr	Communication port	2 port				
	Auto Crossover	(Cross / Direct Cable is supp (Recommend : Cross cab			
Network	Topology		Ring, Line			
Conversion Time	Ring → Line(Bus)	10ms				
Conv	Line(Bus) \rightarrow Ring	500ms				
5	Dimensions(mm)	98(H) X 27(W) X 90(D)				
Basic Specification	Current consumption (mA)	DBSF(S): 850 mA / DBSH(S): 660 mA / DBST: 490 mA DBDF(S): 770 mA / DBDH(S): 674 mA / DBDT: 359 mA				
у З	Baseline DBSF(S): 102 g / DBSH(S): 101 g / DBST: Weight (g) DBDF(S): 100 g / DBDH(S): 98 g / DBDT:					

7.2 Identification and Function

	1	
		(4) RELAY (green)
		(a) On: the module neighboring the two channels are connected and conducts
		as a data relay
		(b) Off: the module neighboring the two channels are connected and does not
		conduct as a data relay
		(5) CHK (green)
		(a) On: indicates CPU's WAR LED
		(b) Blink: station No. in the expansion network conflict (other station numbers)
		(6) FAULT (red)
		(a) On: network station No. conflict (self station No.)
		(b) Blink: frame error occurred
		(7) RUN (green)
		(a) On: CPU operation mode is RUN
		(b) Blink: expansion drive is in wait state for CPU recognition
		(c) Off: CPU operation mode is STOP
		(8) I/F (green)
		(a) Blink: in normal I/F with expansion manager
		(b) Off: I/F with expansion manager unavailable
		(9) PADT On (green): on in PADT connection (10) ERR On (red): CPU operation mode is ERR
		Switch for setting expansion base No.
	Base Setting Switch	(1) x10 for 10 digit setting, x1 for 1 digit setting
2	Date Cetting Owner	(2) Max. 31 bases can be set up
		(3) Error LED on at station No. conflict or setting more than 31 station numbers
3	USB Connector	Connector for peripheral devices (XG5000 etc.) (USB 1.1 supported)
4	Expansion Network Connector	 Connector for expansion base connection. (1) 2 connectors are provided for ring connection without additional switching device (2) Optical-optical, electrical-electrical, and optical-electrical models are provided to enable network construction using mixed electrical/optical
(5)	Expansion Drive Module Reset Switch	 Pressing this switch will trigger module reset operation. (1) Used to reset module only. (2) Make sure to skip the module before conducting module reset (3) Take care that resetting without skip setting of the respective base will cause module isolation error.

Г

Chapter 8 Power Module

This chapter describes the selection, type and specifications of power module.

8.1 Type and Specification

We provide diverse types according to input voltage and output capacity. Select right module according to environment and system. [Table 8.1.1] Power module specification

ltem		XGR-AC12	XGR-AC22	XGR-AC13	XGR-AC23	XGR-DC42	
	Rated input voltage	110 VAC	220 VAC	110 VAC	220 VAC	24 VDC	
	Input voltage range	85V~132VAC	176V~264VAC	85V~132VAC	176V~264VAC	19.2~28.8 VDC	
	Input frequency	50/60 Hz (47 ~ 63 Hz)				-	
	Max. input power	110 VA/42 W		176 VA/72 W		-	
Input	Inrush current	20A peak and lower (with	in8 ms)			80A peak and lower	
	Efficiency	65% or higher					
	Input fuse	Built in(not replaceable by	a user) - AC power: 250V / 3.1 - DC power: 125V/10				
	Allowed instantaneous interruption	Within 20 ms	- DC power: 125V/10A (Time-lag type) UL approved ithin 20 ms				
	Output voltage	5VDC (±2%)					
0 / /	Output current	5.5A		8.5A		7.5A	
Output	Output power	27.5W @ 55℃		46.75W @ 55℃		37.5W @ 55℃	
	Over current protection	6.0 A ~ 13.0 A		9.3 A~17.0 A		9.0 A~17.0 A	
	Purpose	RUN contact (refer to 8.2)	1				
Delevi	Rated switching voltage/current	24VDC, 0.5A					
Relay Output	Min. switching load	5VDC, 1 mA					
	Response time	Off→On/ On→Off: 10 ms	and lower/12 ms and lower				
	Life	Mechanical life: 20 million	and more times, electrical life: ra	ated switching current: 100 th	nousand and more times	3	
Voltage status	display	LED On when output vo	ltage is normal				
Specification of	cable	$0.75 \sim 2 \text{mm}^2$					
Available clamped terminal		RAV1.25-3.5, RAV2-3.5					
Dimension (W	xHxDmm)	55 x 95 x 90		55 x 95 x 110			
Weight		326g	382g	334g	384g	417g	
Applied base and install position		Power part of basic/expansion base		Power part of expansion base		Power part of basic/expansion base	

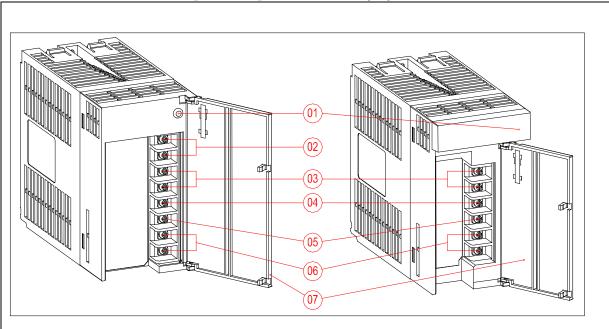
Note

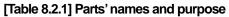
(1) Allowable instantaneous interruption time

(a) The time that the normal output voltage is maintained(normal operation) when AC110/220V/DC24V input voltage is less

than rating value (AC 85/176V/DC 19.2V)

(2) Over current protection


(a) If a current over the rated level is allowed on 5VDC circuit, an over current protective system cuts off the circuit, suspending the system.


(b) If there is any overcurrent, the system should be restarted after eliminating the causes such as low current capacity, shortcircuit and etc.

8.2 Parts' Names

Г

It describes the names and applications of parts of the power module.

No.	Name	Purpose
1	Power LED	5VDC Power display LED
2	NC	Not used
3	RUN Terminal	Displaying RUN state of a system (1) On when CPU is normal RUN mode. (2) Off when the stop error of CPU occurs. (3) It is Off when the mode of CPU turns to STOP.
4	PE Terminal	Functional Grounding terminal for reliability of system operation.
5	LG Terminal	Grounding terminal of power filter
6	Power input Terminal	Power input terminal(1) XGR-AC12, XGP-AC13: 110VAC connection(2) XGR-AC22, XGP-AC23: 220VAC connection(3) XGR-DC42: DC 24V connection
7	Terminal cover	Terminal unit protection cover

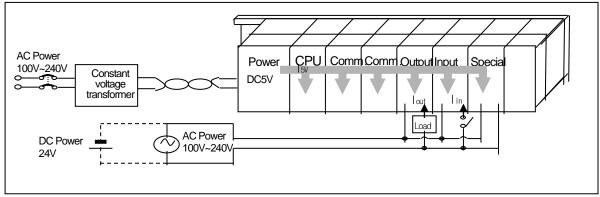
8.3 Selection

The selection of power module is determined by the current that input power voltage and power module should supply to the system, that is, the sum of current consumption of digital I/O module, special module and communication module that are installed on a same base with the power module.

If it exceeds the rated output capacity of power module, the system does not properly work.

Select a power module by considering the power current of each module when structuring a system.

[Table 8.3.1] Current consumption by modules


		Consumption			Consumption
ltem	Name	current	ltem	Name	current
norri	T Carrie	(Unit: mA)	nem	Name	(Unit: mA)
				XGF-AV8A	420
CPU module	XGR-CPUH/T	980		XGF-AC8A	420
	XGR-CPUH/F	1,310	Analog input module	XGF-AD4S	610
	XGR-DBST	550		XGF-AD8A	420
Expansion drive	XGR-DBSF	550		XGF-AD16A	330
module	XGR-DBSH	550		XGF-DV4A	190 (250)
	XGI-D21A	20		XGF-DC4A	190 (400)
	XGI-D22A	30	Analog output	XGF-DC4S	200 (220)
	XGI-D22B	30	module	XGF-DV8A	147 (180)
DC24V input module	XGI-D24A	50		XGF-DC8A	243 (300)
	XGI-D24B	50		XGF-DV4S	200 (150)
	XGI-D28A	60	High speed counter	XGF-HO2A	270
	XGI-D28B	60	module	XGF-HD2A	330
AC110V input module	XGI-A12A	30		XGF-PO3A	400
AC220V input module	XGI-A21A	20		XGF-PO2A	360
Relay output module	XGQ-RY1A	250		XGF-PO1A	340
	XGQ-RY2A	500		XGF-PD3A	860
	XGQ-RY2B	500		XGF-PD2A	790
	XGQ-TR2A	70		XGF-PD1A	510
	XGQ-TR2B	70	De elfiere in en este de	XGF-PO4H	430
Transistor output	XGQ-TR4A	130	Positioning module	XGF-PO3H	420
module	XGQ-TR4B	130		XGF-PO2H	410
	XGQ-TR8A	230	-	XGF-PO1H	400
	XGQ-TR8B	230	-	XGF-PD4H	890
Trice output module	VCO SS34	200		XGF-PD3H	850
Triac output module	XGQ-SS2A	300		XGF-PD2H	600
I/O module	XGH-DT4A	110		XGF-PD1H	520
I/O module		110	DTD innut markets	XGF-RD4A	450
	XGL-EFMF	640	RTD input module	XGF-RD4S	783
FEnet I/F module (Optical/Electricity)	XGL-EFMT	410	Thermocouple input module	XGF-TC4S	610
	XGL-ESHF	1,200	Event input module	XGF-SOEA	700
	XGL-EIMF	490	Motion control module	XGF-M16M	640
PAPIEnet I/F Module	XGL-EIMT	335		XGF-AH6A	770
	XGL-EIMH	400	Analog I/O module		770

ltem	Name	Consumption current (Unit: mA)	ltem	Name	Consumption current (Unit: mA)
Ethernet/IP I/F module	XGL-EIPT	400	Dnet I/F module	XGL-DMEA	440
	XGL-C22A	330	FDEnet I/F module	XGL-EDMF	410
Cnet I/F module	XGL-C42A	300	FDENELI/F MOQUIE	XGL-EDMT	410
	XGL-CH2A	340	Pnet I/F module	XGL-PMEA	560
Rnet I/F module	XGL-RMEA	410	-	-	-

() means the current consumption for external DC24V.

8.4 Example of Current Consumption/Power Calculations

It describes which power module should be used for the XGR system with the following module.

[Figure 8.4.1] Example of use of power module

8.4.1 In case of basic base

Γ

Though you equip all modules that consume maximum current, it is not higher than 5.5A. So consider input voltage and select XGR-AC12 or XGT-AC22

[Table 8.4.1] Consumption current/power calculation of basic base

Туре	Name	No. of equipment	Consumption current (5V)
CPU module	XGR-CPUH/F	1	1.31A
Basic base	XGR-M02P	1	0.2A
	XGR-M06P	1	0.2A
FEnet module	XGL-EFMF	6	0.61A
Consumption current (Total) / Power (Total)		ower (Total)	1.31A + 0.61A*6 = 4.97A / 4.97×5V = 24.85W

8.4.2 In case of expansion base

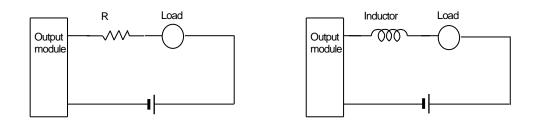
Calculate the consumption current of module equipped at expansion base and select 5.5A or 8.5A [Table 8.4.2] Consumption current/power calculation of basic base

Туре	Name	No. of equipment	Consumption current (5V)
Expansion drive module	XGR-DBSF	1	0.65A
Expansion base	XGB-E12RP	1	0.21A
Input module	XGI-D24A	2	0.05A
Output module	XGQ-RY2A	6	0.5A
A/D conversion module	XGF-AD4S	2	0.61A
Profibus-DP	XGL-PMEA	2	0.56A
Consumption current (Total) / Power (Total)		wer (Total)	$0.65A + 0.21A + 0.05A^{*2} + 0.5A^{*6} + 0.61A^{*2} + 0.56A^{*2} = 6.30A$ / 6.30A × 5V = 31.50 W

Since total of consumption current (5V) is 6.17A, use one among XGR-AC13, XGP-AC23 according to input voltage. If power module is less than a necessary capacity, reliability of system is not guaranteed.

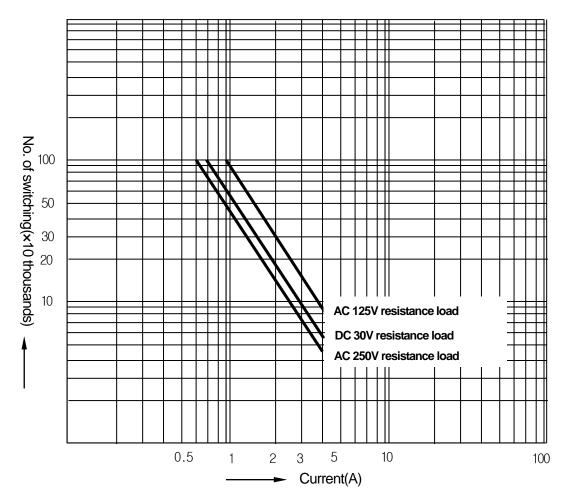
Note

If efficiency of power module is applied to power (5V), the user can estimates the maximum input power of PLC system. Ex) Total of consumption power (5V) / Power module efficiency (Min.) = 100 W / 0.65 % = 154 W


Г

Chapter 9. I/O Module

9.1 Cautions for Selecting Module


It describes the cautions when selecting digital I/O modules used for the XGI series.

- There are two digital input types; current sink input and current source input Since the wiring method of external input power varies in a DC input module, it should be selected considering the specifications of input connectors.
- 2) The max. simultaneous input point varies depending on a module type. That is, it may be different, depending on input voltage and ambient temperature. Please review the specifications of input module to apply before use.
- 3) In case of an application for highly frequent switching or inductive load switching, the relay output module may have a shorter life, so it needs a transistor module or triac output module, instead of it.
- 4) If an output module operates an inductive load(L), the max. On/Off frequency should be limited to On per 1 second and Off per 1 second, each.
- 5) In case a counter timer using DC/DC converter is used as a load in an output module, setting the average current may cause a trouble because it may have inrush current in case of On or a certain cycle during operation. Therefore, if using the foresaid load, it is necessary to connect resistance or inductor parallel to load or alternatively use a module of which max. load current is large.

6) A fuse in an output module can not be replaced. That's why it is intended to prevent external wiring from being damaged when the output of a module is short-circuited. Therefore, the output module may not be protected. If an output module is destructed in any other fault mode save for short-circuit, a fuse may not work.

 The following figure shows the relay life of relay output module. It also shows the max. life of relay used for relay output.

8) A clamped terminal with sleeve can not be used for the XGI terminal strip. The clamped terminals suitable for terminal strip are as follows(JOR 1.25-3:Daedong Electricity).

- 9) The cable size connected to a terminal strip should be 0.3~0.75 mm² stranded cable and 2.8 mm thick. The cable may have different current allowance depending on the insulation thickness.
- 10) The coupling torque available for fixation screw and terminal strip screw should follow the table below.

Coupling position	Coupling torque range
IO module terminal strip screw(M3 screw)	42~58 N·cm
IO module terminal strip fixation screw(M3 screw)	66~89 N·cm

11) Transistor output module(XGQ-TR4A, XGQ-TR8A) supports terminal protector function. Thermal Protector is the function to prevent overload and overheat.

9.2 Digital Input Module Specifications

9.2.1 8 point DC24V input module (source/sink type)

	Module type	D	C Input module						
Spec.			XGI-D21A						
Input point		8 points							
Insulation method		Photo coupler insulation	Photo coupler insulation						
Rated input voltage		DC24V							
Rated input current		Approx. 4 mA							
Voltage range		DC20.4~28.8V (5% and lower ripp	le rate)						
Input derating		None							
On voltage / On curre	ent	DC19V and higher / 3 mA and high	ner						
Off voltage / Off curre	ent	DC11V and lower / 1.7 mA and low	ver						
Input resistance		Approx. 5.6 kΩ							
Response time	$Off \rightarrow On$	1ms/3ms/5ms/10ms/20ms/70ms/10 Initial value:3ms							
	$On {\rightarrow} Off$	1ms/3ms/5ms/10ms/20ms/70ms/10 Initial value:3ms							
Withstand voltage		AC560V rms/3 Cycle (altitude 2000							
Insulation resistance		$10 M\Omega$ and higher by Insulation ohn	nmeter						
Common method		16 point/ COM							
Suitable cable size		Stranded cable between 0.3~0.75	🗯 (2.8mm and smaller outer dia.)						
Suitable clamped ter	minal	R1.25-3 (Sleeve built-in clamped te	erminal is not available)						
Current consumption	n(mA)	20mA							
Operation display		LED On with Input On							
External connection	method	9 point Terminal strip connector (M3 X 6 screws)							
Weight		0.1 kg							
	Circuit dia	gram	Terminal block Contact						
			TB1 0						
			TB2 1 TB3 2						
Г									
0	Photoco	oupler DC5V o							
			TB7 6 22 TB8 7 m						
7	<u>T</u> ;								
	5								
		circuit							
I									
* COM : TB9									
I			<u> </u>						

	Module type	D	C Input module							
Spec.		16 points	XGI-D22A							
Insulation method	1	Photo coupler insulation								
Rated input voltag		DC24V								
Rated input vonag		Approx. 4 ^{mA}								
Voltage range	in and the second se	DC20.4~28.8V (5% and lower rippl	le rate)							
Input derating		None	ie iale j							
On voltage / On c	urrent	DC 15V and higher / 3mA and high)or							
Off voltage / Off c		DC 12V and lower / 1.7mA and low								
Input resistance	unent									
	$Off \rightarrow On$	Approx. 5.6 kΩ 1ms/3ms/5ms/10ms/20ms/70ms/1 Initial value:3ms	00ms (Set by CF	PU Parameter)					
Response time	$On \rightarrow Off$	1ms/3ms/5ms/10ms/20ms/70ms/1 Initial value:3ms	00ms (Set by CF	PU Parameter)					
Insulation withstar	nd voltage	AC560V rms/3 Cycle (altitude 2000)m)							
Insulation resistar	nce	$10^{\text{M}\Omega}$ and higher by Insulation ohm	nmeter							
Common method	1	16 point/ COM								
Suitable cable siz	e	Stranded cable between 0.3~0.75 mm [*] (2.8mm and smaller outer dia.)								
Suitable clamped	terminal	R1.25-3 (Sleeve built-in clamped te	erminal is not ava	ilable)						
Current consump	tion(^{mA})	30mA								
Operation display		LED On with Input On								
External connecti	on method	18 point Terminal strip connector (M3 X 6 screws)								
Weight		0.12 kg								
	Circuit	liagram	Terminal block	Contact						
			TB1	0						
			TB2	1						
			TB3 TB4	2						
		DC5V	TB5	4						
0	Pho	tocoupler ϕ	TB6	5						
	<u>┝─</u> ℝ──── <mark>●</mark>		TB7	6						
	R R		TB8	7						
15 TD10			TB9	8						
			TB10	9						
		circuit	TB11	10						
			TB12 TB13	11 12						
DC24V	-		TB13 TB14	12						
* COM : TB17			TB14	14						
			TB16	15						
			TB17	COM						
			TB18	NC						

9.2.2 16 point DC24V input module (source/sink type)

9.2.3	16 point DC24V i	nput module	(source type)
-------	------------------	-------------	---------------

	Module type		DC Input module					
Spec.		-	XGI-D22B					
Input point		16 points						
Insulation metho	d	Photo coupler insulation						
Rated input volta	ge	DC24V						
Rated input curre	ent	Approx. 4 mA						
Voltage range		DC20.4~28.8V (5% and lower rip	ple rate)					
Input derating		None						
On voltage / On	current	DC 19V and higher / 3mA and high	gher					
Off voltage / Off of	current	DC 11V and lower / 1.7mA and lo	ower					
Input resistance		Approx. 5.6 k Ω						
Response time	$Off \rightarrow On$	1ms/3ms/5ms/10ms/20ms/70ms/ Initial value:3ms						
	$On \rightarrow Off$	1ms/3ms/5ms/10ms/20ms/70ms/ Initial value:3ms	/100ms (Set by Cl	PU Parameter	r)			
Insulation withsta	and voltage	AC560V rms/3 Cycle (altitude 200	00m)					
Insulation resista	nce	$10^{M\Omega}$ and higher by Insulation oh	mmeter					
Common metho	d	16 point/ COM						
Suitable cable siz	ze	Stranded cable between 0.3~0.75	5 mm² (2.8mm and s	smaller outer o	dia.)			
Suitable clamped	d terminal	R1.25-3 (Sleeve built-in clamped	terminal is not ava	ilable)				
Current consum	otion(^{mA})	30mA						
Operation display	у	LED On with Input On						
External connect	ion method	18point Terminal strip connector (M3 X 6 screws)						
Weight		0.12 kg						
	Circuit	diagram	Terminal block	Contact				
	R R	Photocoupler LED	TB1 TB2 TB3 TB4 TB5 TB6 TB7 TB8 TB9	0 1 2 3 4 5 6 7 8				
* COM : TB17		circuit	TB10 TB11 TB12 TB13 TB14 TB15 TB16 TB17 TB18	9 10 11 12 13 14 15 COM NC				

Spec.	Module type			nput mo					
Input point		32 points	X	GI-D24/	•				
Insulation method	4	Photo coupler insulation							
Rated input volta		DC24V							
Rated input curre	-	Approx. 4 mA							
Voltage range		DC20.4~28.8V (5% and low	ver ripple r	ate)					
Input derating		Refer to the below derating							
On voltage / On o	current	DC 19V and higher / 3mA a							
Off voltage / Off of		DC 11V and lower / 1.7mA	-						
Input resistance		Approx. 5.6 k Ω							
	$Off \rightarrow On$	1ms/3ms/5ms/10ms/20ms/	70ms/100	ms (Set b	y CPU P	arameter)		
Response time	$On \rightarrow Off$	Initial value:3ms 1ms/3ms/5ms/10ms/20ms/	70ms/100	ms (Set b	y CPU P	arameter)		
Insulation withsta	ndvoltago	Initial value:3ms AC560V rms/3 Cycle (altitue	do 2000m)						
Insulation resista	0	$10^{M\Omega}$ and higher by Insulat							
Common method		32points / COM							
Suitable cable siz		0.3 m ²							
		50mA							
Current consump									
Operation display		LED On with Input On							
External connect	ion method	40point connector							
Weight	Circuit diag	0.1 kg	No	Contact	No	Contact			
	Circuit diag		B20	0	A20	16			
Γ	Dhata	↔ DC5V ↔	B19	1	A19	17			
			B18	2	A18	18		00	١
			B17	3	A17	19	B20 B19	0 0	A20 A19
31 405	Ţ.Ţ		B16	4	A16	20	B18		A18
	5	Internal Circuit	B15	5	A15	21	B17 B16	0 0	A17 A16
		Circuit	B14	6	A14	22	B15	00	A15
DC24V			B13	7	A13	23	B14 B13	0 0	A14 A13
• COM : B02, B01, A02,	A01		B12	8	A12	24	B12	00	A12
			B11	9	A11	25	B11 B10	0 0	A11 A10
90		-	B10	10	A10	26	B09	00	A09
80		+++	B09	11	A09	27	B08 B07	00	A08 A07
70 - 70 -		DC28.8V	B08	12	A08	28	B06 B05	0 0	A06 A05
On rate 60 -		<u> </u>	B07	13	A07	29	B04	00	A04
50		++++	B06	14	A06	30	B03 B02	0 0	A03 A02
40	 	++++	B05	15	A05	31	B01	00	A01
0	10 20 30	40 50 55	B04	NC	A04	NC		-	
5	Ambient ten		B03	NC	A03	NC			
	Derating le		B02	COM	A02	COM			
	-		B01	COM	A01	COM			

9.2.4 32 point DC24V input module (source/sink type)

9.2.5	32 point DC24V input module (source type)
-------	---

	Module type		DC lı	nput moo	lule				
Spec.				GI-D24E					
Input point		32 points							
Insulation metho	d	Photo coupler insulation							
Rated input volta	ge	DC24V							
Rated input curre	ent	Approx. 4 mA							
Voltage range		DC20.4~28.8V (5% and low	er ripple r	ate)					
Input derating		Refer to the below derating	evel						
On voltage / On o	current	DC19V and higher / 3 mA a	nd higher						
Off voltage / Off of	current	DC 11V and lower / 1.7mA a	and lower						
Input resistance		Approx. 5.6 kΩ							
Response time	$Off \rightarrow On$	1ms/3ms/5ms/10ms/20ms/ Initial value:3ms			-				
	$\text{On}{\rightarrow}\text{Off}$	1ms/3ms/5ms/10ms/20ms/ Initial value:3ms	70ms/100i	ms (Set b	y CPU Pa	arameter)			
Insulation withsta	-	AC560V rms/3 Cycle (altitud	-						
Insulation resista	nce	$10^{M\Omega}$ and higher by Insulati	on ohmme	eter					
Common metho	d	32 points / COM							
Suitable cable siz	ze	0.3 ㎜							
Current consump	otion(^{mA})	50mA							
Operation display	/	LED On with Input On							
External connect	ion method	40point connector							
Weight		0.1 kg							
	Circuit diag	Iram	No	Contact	No	Contact			
Г		DC5V	B20	0	A20	16			
<u>0</u> B20	Photo	coupler T	B19	1	A19	17		\sim	
			B18	2	A18	18	B20	00	A20
	R		B17	3	A17	19	B19		A19
			B16	4	A16	20	B18 B17	0 0	A18 A17
		Circuit	B15	5 6	A15	21	B16 B15	00	A16
DC24V			B14	7	A14	22	B14	00	A15 A14
* COM : B02, B01, A02	, A01		B13 B12	8	A13	23 24	B13 B12	0 0	A13 A12
			B12 B11	9	A12 A11	24 25	B11	00	A11
			B10	10	A10	25	B10 B09	0 0	A10 A09
90			B09	11	A09	20	B08 B07	0 0	A08 A07
80			B09 B08	12	A09 A08	27	B06	0 0	A06
On rate		DC28.8V	B07	13	A07	20	B05 B04	0 0	A05 A04
(%) 60			B06	14	A07	30	B03	00	A03
50			B05	15	A05	31	B02 B01	00	A02 A01
40			B04	NC	A04	NC			
0	10 20 30 Ambient ter	40 50 55	B03	NC	A03	NC			
	Derating le		B02	COM	A02	COM			
			B01	COM	A01	COM			

Spec.	Mc	odule type					DC Input XGI-I	t module D28A)				
Input point			64 poi	ints									
Insulation m	Insulation method			coupler	insulatio	n							
Rated input	Rated input voltage			Photo coupler insulation DC24V									
Rated input	t current		Appro	x.4 mA									
Voltage ran	ige		DC20	.4~28.8\	/ (5% an	d lower ri	pple rate	e)					
Input deratir	nput derating			to the be	elow dera	ting level							
On voltage	On voltage / On current			3V and h	igher / 3r	nA and h	igher						
Off voltage /	/ Off current		DC 11	V and lc	wer/1.7	'mA and I	lower						
Input resista	ance		Appro	x. 5.6 kΩ	2								
Response ti	time	$Off \rightarrow On$	Initial	l value:3r	ns)ms/70m:				,			
		$On \rightarrow Off$	Initial	l value:3r	ns)ms/70m		s (Set by C	CPU Par	ameter)			
	vithstand voltag	ge	-			altitude 20							
Insulation re			-	-	-	sulation o	hmmete	r					
Common m			-	nt / COM									
Suitable cat			0.3 mm² 60mA										
	Current consumption(mA)			-									
Operation display				LED On with Input On (32point LED on by switching)									
	External connection method			40point connector x 2									
Weight			0.15 k	<u> </u>		1		1 1					
	Circuit dia	agram		Contact	No	Contact	No	Contact	No	Contact			
Г		DC5V	1B20	0	1A20	16	2B20	32	2A20	48 49			
0	Photo		1B19	2	1A19	17	2B19	33	2A19	_		00	١
			1B18 1B17	3	1A18 1A17	18 19	2B18 2B17	34 35	2A18 2A17	50 51	B20 B19	0 0	A20 A19
	R		1B17	4	1A17	20	2B17 2B16	36	2A17 2A16	52	B18 B17	00	A18 A17
63 2A05		Internal	1B10	5	1A15	20	2B10	37	2A10	53	B17 B16		A17 A16
	•	Circuit	1B13	6	1A13	21	2B13	38	2A13	54	B15 B14	0 0	A15 A14
DC24V			1B13	7	1A13	23	2B13	39	2A13	55	B13 B12	00	A12
		A _R Switching	1B12	8	1A12	24	2B12	40	2A12	56	B11	00	A11
		B° Circuit	1B11	9	1A11	25	2B11	41	2A11	57	B10 B09	00	A10 A09
		A: Displaying 0~31	1B10	10	1A10	26	2B10	42	2A10	58	B08 B07	0 0	A08
* COM : 1B 2B	802, 1801 302, 2801	B: Displaying 0~31	1B09	11	1A09	27	2B09	43	2A09	59	B06	00	A06
I		2. 213pityiniy 02~00	1B08	12	1A08	28	2B08	44	2A08	60	B05 B04	00	A04
90 80			1B07	13	1A07	29	2B07	45	2A07	61	B03 B02	0 0	A03 A02
70 –			1B06	14	1A06	30	2B06	46	2A06	62	B01) A01
(%) 50 40		DC28.8V	1B05	15	1A05	31	2B05	47	2A05	63		-	
30 -	++++		1B04	NC	1A04	NC	2B04	NC	2A04	NC			
20				4		1		1		1			
20	10 20 3	0 40 5055	1B03	NC	1A03	NC	2B03	NC	2A03	NC			
20	10 20 3 Ambient 1	0 40 50 55 temp(℃)	1B03 1B02	NC COM	1A03 1A02	NC NC	2B03 2B02	NC COM	2A03 2A02	NC NC			

9.2.6 64 point DC24V input module (source/sink type)

9.2.7 64 point DC24V input module (source type)

	Module type					DC Input	module)					
Spec.						XGI-I							
Input point		64 po	ints										
Insulation method		Photo coupler insulation											
Rated input voltage		DC24	DC24V										
Rated input current	Rated input current												
Voltage range		DC20	.4~28.8\	/ (5% an	d lower ri	pple rate)						
Input derating	Input derating				ating level								
On voltage / On current		DC 19	9V and h	igher / 3r	mA and h	igher							
Off voltage / Off current		DC 1	1V and lo	ower / 1.7	'mA and	lower							
Input resistance			x. 5.6 kΩ										
Response time	$Off \rightarrow On$	Initia	l value:3	ms	Oms/70m				-				
	$On \rightarrow Off$		3ms/5ms I value:3i)ms/70m	s/100ms	(Set by (CPU Par	ameter)				
Insulation withstand volta	ge	AC56	0V rms/3	3 Cycle (a	altitude 20	000m)							
Insulation resistance		10 MΩ	and hig	her by In:	sulation o	hmmete	r						
Common method		32 po	ints / CO	M									
Suitable cable size	Suitable cable size		2										
Current consumption(mA)	Current consumption(mA)		60mA										
Operation display		LED On with Input On (32point LED on by switching)											
External connection meth	od	40poi	nt conne	$\cot x 2$									
Weight		0.15 k	g		1	1	1		1 1				
Circuit dia	agram	No	Contact		Contact	No	Contact	No	Contact				
	 ⇔ DC5V ↔	1B20	0	1A20	16	2B20	32	2A20	48 49				
0 Photoc	oupler	1B19	1	1A19	17	2B19	33	2A19			\square		
		1B18 1B17	3	1A18 1A17	18 19	2B18 2B17	34 35	2A18 2A17	50 51	B20 B19 B18		A20 A19	
		1B17	4	1A17	20	2B17 2B16	36	2A17 2A16	52		00	A18	
	Internal Circuit	1B15	5	1A15	20	2B10	37	2A10	53	B17 B16	00	A17 A16	
DC24V		1B14	6	1A14	22	2B14	38	2A14	54	B15 B14	0 0	A15	
	A _Q Switching	1B13	7	1A13	23	2B13	39	2A13	55	B13	00	A14 A13	
	B° Circuit	1B12	8	1A12	24	2B12	40	2A12	56	B12 B11	0 0 0 0	A12 A11	
* COM : 1B02,1B01	A: Displaying 0~31	1B11	9	1A11	25	2B11	41	2A11	57	B10 B09	0 0	A10 A09	
2B02, 2B01	B: Displaying 32~63	1B10	10	1A10	26	2B10	42	2A10	58	B08 B07	00	A08 A07	
		1B09	11	1A09	27	2B09	43	2A09	59	B06	00	A06	
90		1B08	12	1A08	28	2B08	44	2A08	60	B05 B04	0 0	A05 A04	
80 70		1B07	13	1A07	29	2B07	45	2A07	61	B03	00	A03	
On rate 60 (%) 40		1B06	14	1A06	30	2B06	46	2A06	62	B02 B01	00	A02 A01	
(%) 40	DC28.8V	1B05	15	1A05	31	2B05	47	2A05	63				
30 20	+	1B04	NC	1A04	NC	2B04	NC	2A04	NC				
0 10 20 30	0 40 50 55	1B03	NC	1A03	NC	2B03	NC	2A03	NC				
Ambient te	mp(° C)	1B02	COM	1A02	NC	2B02	COM	2A02	NC				
Derating I	evel	1B01	COM	1A01	NC	2B01	COM	2A01	NC				

Module type Spec.		AC Input mod XGI-A12A					
Input point	16 points	AGFATZA					
Insulation method	Photo coupler insulation						
Rated input voltage	AC100-120V(+10/-15%) 50/60 H	7(+3 Hz) (5% and k	ower distortion)				
Rated input current	Approx. 8 mA (AC100,60 Hz), ap						
Inrush current	Max. 200 mA 1 ms and lower(AC		0,00				
		1327)					
Input derating	Refer to the below derating level						
On voltage / On current	AC80V and higher / 5 mA and high						
Off voltage / Off current	AC30V and lower / 1 mA and low	(, ,					
Input resistance	Approx. 12 kΩ(60 Hz), approx. 15						
Response time $Off \rightarrow On$	15 ms and lower(AC100V 50 Hz,						
$On \rightarrow Off$	25 ms and lower(AC100V 50 Hz,	•					
Insulation withstand voltage	AC1780V rms/3 Cycle (altitude 2	-					
Insulation resistance	10 MQ and higher by Insulation of	nmeter					
Common method	16 point/ COM	- * /					
Suitable cable size	Stranded cable between 0.3~0.7	-		ia.)			
Suitable clamped terminal		R1.25-3 (Sleeve built-in clamped terminal is not available)					
Current consumption(mA)	30mA						
Operation display	LED On with Input On						
External connection method	18point Terminal strip connector	(M3 X 6 screws)					
Weight	0.13 kg	· · ·	<u>т т</u>				
Circuit	diagram	Terminal block	Contact				
	A	TB1	0				
	hotocoupler \ominus DC5V	TB2	2				
		TB3	3				
		TB4 TB5	4				
	Internal	TB5	5				
	Circuit	TB7	6				
AC110V		TB8	7				
* COM : TB17		TB9	8				
90	• • •	TB10	9				
80		TB11	10				
70	AC120V	TB12	11				
On rate 60 (%)		TB13	12				
50 50	AC132V	TB14	13				
40		TB15	14				
0 10 20	30 40 50 55	TB16	15				
Ambient		TB17	COM				
Derating		TB18	NC				

9.2.8 16 point AC110V input module

Spec. XGLA21A Input point 8 points Insulation method Photo coupler insulation Rated input voltage Ac100-240V(+10'-15%) 5060 H2(±3 H2) (5% and lower distortion) Rated input voltage Ac100-240V(+10'-15%) 5060 H2(±3 H2) (5% and lower distortion) Rated input current Approx. 17 mA (AC200,60 H2), approx. 14 mA (AC200,50 H2) Insub current Max. 500 mA 1 ms and lower(AC264V) Input deraing Refer to the below derating level On voltage / On current AC30V and lower /1 mA and lower (S0 H2,60 H2) Input resistance Approx. 12 k2(80 H2) approx. 15 k3(50 H2) Response time Off \rightarrow On 11 msulation weltstand voltage Ac280V and lower (AC200V 50 H2,60 H2) Insulation resistance 10 M2 and higher by Insulation ohmmeter Common method B points / COM Suitable cable size Stranded cable between 0.3-0.75 ==# (2.8mm and smaller outer dia.) Suitable cable size Stranded cable between 0.3-0.75 ==# (2.8mm and smaller outer dia.) Suitable cable size Stranded cable between 0.3-0.75 ==# (2.8mm and smaller outer dia.) Suitable cable size Stranded cable between 0.3-0.75 ==# (2.8mm and smaller outer dia.) Con rate 0 onection method 9 points / C		Module type		AC input mod	dule				
Insulation method Photo coupler insulation Rated input voltage AC100-240V(+10'-15%) 5060 Hz(±3 Hz) (5% and lower distortion) Rated input current Approx. 17 mk (AC200,00 Hz), approx. 14 mk (AC200,50 Hz) Inrush current Max. 500 mk 1 ms and lower(AC264V) Input deraing Refer to the below derating level On voltage / On current AC30V and higher / 5 mA and higher(50 Hz, 60 Hz) Input resistance Approx. 12 K2(60 Hz), approx. 15 K2(50 Hz) Response time Off → On On → Off 25 ms and lower(AC200V 50 Hz, 60 Hz) Insulation resistance 10 MR and higher by Insulation ohrmmeter Common method 8 points / COM Suitable cales size Stranded cable between 0.3-0.75 mf (2.8mm and smaller outer dia.) Suitable cales size Stranded cable between 0.3-0.75 mf (2.8mm and smaller outer dia.) Suitable calmped terminal R1.25-3 (Sleeve built-in clamped terminal is not available) Current consumption(mk) 20mA On rate 600 9 point Terminal strip connector (M3 X 6 screws) Weight 0.13 kg TBB 4 TBB 7 TB9 COM 0 0 0 <t< th=""><th>Spec.</th><th></th><th></th><th>XGI-A21A</th><th></th><th></th></t<>	Spec.			XGI-A21A					
Rated input voltage AC100-240V(+10 ¹ /5%) 5060 Hz(±3 Hz) (5% and lower distortion) Rated input current Approx. 17 =/\ (AC200,60 Hz), approx. 14 =/\ (AC200,50 Hz) Innub current Max. 500 =/\ 1 ms and lower(AC264V) Input derating Refer to the below derating level On voltage / Oft current AC80V and lower / 1 mA and lower (50 Hz,60 Hz) Oft voltage / Oft current AC30V and lower / 1 mA and lower (50 Hz,60 Hz) Oft voltage / Oft current AC30V and lower / 1 mA and lower (50 Hz,60 Hz) Input resistance Approx. 12 K3(60 Hz), approx. 15 K3(50 Hz) Insulation withstand voltage AC2830V mm3 Ox/de (altitude 2000m) Insulation withstand voltage Response time Common method 8 points / COM Suitable calanged terminal R1 25-3 (Sleeve built-in damped terminal is not available) Current consumption(=V) 20mA Operation display LED On with Input On External connection method 9point Terminal strip connector (M3 X 6 screws) Weight 0.13 kg	Input point		8 points						
Rated input current Approx. 17 m² (AC200,60 H₂), approx. 14 m² (AC200,50 H₂) Inrush current Max. 500 m² 1 m³ and lower(AC264V) Input derating Refer to the below derating level On voltage / On current AC30V and lower / 1 mA and lower (50 H₂,60 H₂) Off voltage / Off current AC30V and lower / 1 mA and lower (50 H₂,60 H₂) Input resistance Approx. 12 kΩ(60 H₂), approx. 15 kQ(50 H₂) Response time Off → On Insulation withstand voltage AC2830V ms3 Cycle (altitude 200m) Insulation withstand voltage AC2830V ms3 Cycle (altitude 200m) Insulation method 8 points / COM Suitable cable size Stranded cable between 0.3-0.75 m² (2.8mm and smaller outer dia.) Suitable cable size Stranded cable between 0.3-0.75 m² (2.8mm and smaller outer dia.) Suitable cable size Stranded cable between 0.3-0.75 m² (2.8mm and smaller outer dia.) Suitable cable size Stranded cable between 0.3-0.75 m² (2.8mm and smaller outer dia.) Current consumption(m4) QOmA Operation display LED On with Input On External connection method 9 point Terminal strip connector (M3 X 6 screws) Veight 0.13 kg On rate (%) 0 0 <td>Insulation method</td> <td>b</td> <td colspan="7"></td>	Insulation method	b							
Innush current Max. 500 ^{mA} 1 ^{mb} and lower(AC264V) Input derating Refer to the below derating level On votage / On current AC80V and higher /5 mA and higher(50 ^{H2} ,60 ^{H2}) Off votage / Off current AC30V and lower /1 mA and lower (50 ^{H2} ,60 ^{H2}) Input resistance Approx. 12 kQ(60 ^{H2}), approx. 15 kQ(50 ^{H2}) Response time Off → On 0n → Off 25 ms and lower(AC200V 50 ^{H2} ,60 ^{H2}) Insulation resistance 10 ^{M2} and ligher by Insulation chmmeter Common method 8 points / COM Suitable calce lesize Stranded cable between 0.3–0.75 ^{mf} (2.8mm and smaller outer dia.) Suitable calce lesize Stranded cable between 0.3–0.75 ^{mf} (2.8mm and smaller outer dia.) Suitable calce lesize Stranded cable between 0.3–0.75 ^{mf} (2.8mm and smaller outer dia.) Suitable calce lesize Stranded cable between 0.3–0.75 ^{mf} (2.8mm and smaller outer dia.) Current consumption(^{mA}) 20mA Operation display LED On with Input On External connection method 9point Terminal circuit TB1 0 0 37 ^C 49 ^C 49 ^C AC240V 0 0 0 AC264V 0 0 0 <t< td=""><td>Rated input volta</td><td>ge</td><td>AC100-240V(+10/-15%) 50/60 Hz</td><td>z(±3 Hz) (5% and I</td><td>lower distortior</td><td>n)</td></t<>	Rated input volta	ge	AC100-240V(+10/-15%) 50/60 Hz	z(±3 Hz) (5% and I	lower distortior	n)			
Input derating Refer to the below derating level On voltage / On current AC80V and higher / 5 mA and higher(50 H2,60 H2) Off voltage / Off current AC30V and higher / 1 mA and lower (50 H2,60 H2) Input resistance Approx. 12 KQ(60 H2), approx. 15 KQ(50 H2) Response time Off \rightarrow On Insulation withstand voltage AC2830V ms/3 Cycle (altitude 2000m) Insulation withstand voltage AC2830V ms/3 Cycle (altitude 2000m) Insulation resistance 10 M2 and higher by Insulation ohmmeter Common method 8 points / COM Suitable cable size Stranded cable between 0.3-0.75 m² (2.8mm and smaller outer dia.) Suitable cable size Stranded cable between 0.3-0.75 m² (2.8mm and smaller outer dia.) Current consumption(m4) 20mA Operation display LED On with Input On External connection method 9point Terminal strip connector (M3 X 6 screws) Weight 0.13 kg TB1 0 TB2 1 TB3 2 Growt response time 37 °C 49 °C AC264V Meight 0.13 kg TB8 7 TB9 6	Rated input curre	ent	Approx. 17 mA (AC200,60 Hz) , a	pprox. 14 mA (AC	C200,50 Hz)				
On voltage / On current AC80V and higher / 5 mA and higher (50 Hz,60 Hz) Off voltage / Off current AC30V and lower / 1 mA and lower (50 Hz,60 Hz) Input resistance Approx. 12 kQ(60 Hz), approx. 15 kQ(50 Hz) Response time Off → On 0n → Off 25 ms and lower (AC200V 50 Hz,60 Hz) Insulation withstand voltage AC2830V ms3 Cycle (altitude 2000m) Insulation resistance 10 M2 and higher by Insulation ohmmeter Common method 8 points / COM Suitable cable size Stranded cable between 0.3-0.75 tim (2.8mm and smaller outer dia.) Suitable clamped terminal R1.25-3 (Sleeve built-in clamped terminal is not available) Current comsumption(mA) 20 mA Operation display LED On with Input On External connection method 9 point Terminal strip connector (M3 X 6 screws) Weight 0.13 kg TB1 0 TB2 1 TB3 2 TB4 3 TB5 4 TB6 7 TB8 7 TB8 7 TB9 COM On rate 0 0	Inrush current		Max. 500 mA 1 ms and lower(AC2	264V)					
Off voltage / Off current AC30V and lower / 1 mA and lower (50 H2,60 H2) Input resistance Approx. 12 kQ(60 H2), approx. 15 kQ(50 H2) Response time Off → On 15 ms and lower (AC200V 50 H2,60 H2) Insulation withstand voltage AC2830V ms3 Cycle (althude 2000m) Insulation resistance 10 M2 and higher by Insulation ohmmeter Common method 8 points / COM Suitable cable size Stranded cable between 0.3-0.75 m² (2.8mm and smaller outer dia.) Suitable clamped terminal R1.25-3 (Sleeve built-in clamped terminal is not available) Current consumption(M ^A) 20mA Operation display LED On with Input On External connection method 9 point Terminal strip connector (M3 X 6 screws) Weight 0.13 kg The figure for DCSV figure for	Input derating		Refer to the below derating level						
Input resistance Approx. 12 kΩ(60 Hz), approx. 15 kΩ(50 Hz) Response time Off → On 15 ms and lower(AC200V 50 Hz, 60 Hz) Insulation withstand voltage AC22830V ms/3 Cycle (altitude 2000m) Insulation resistance 10 M2 and higher by Insulation ohmmeter Common method 8 points / COM Suitable cable size Stranded cable between 0.3–0.75 m/ (2.8mm and smaller outer dia.) Suitable cable size Stranded cable between 0.3–0.75 m/ (2.8mm and smaller outer dia.) Current consumption(^{IIIA}) 20mA Operation display LED On with Input On External connection method 9point Terminal strip connector (M3 X 6 screws) Weight 0.13 kg Terminal block Contact TB3 Veright 0.13 kg Terminal block Terminal contact Veright 0.13 kg Terminal contact Veright 0.13 kg Terminal contact Veright 0 On mode contact Veright AC240V On rate 60 m/ 0 0 10 m/ 0	On voltage / On o	current	AC80V and higher / 5 mA and hig	gher(50 Hz,60 Hz)					
Response time Off → On 15 ms and lower(AC200V 50 Hz,60 Hz) Insulation withstand voltage AC2830V ms/3 Cycle (altitude 2000m) Insulation resistance 10 M2 and higher by Insulation ohmmeter Common method 8 points / COM Stranded cable between 0.3~0.75 m² (2.8mm and smaller outer dia.) Suitable cable size Stranded cable between 0.3~0.75 m² (2.8mm and smaller outer dia.) Stranded cable between 0.3~0.75 m² (2.8mm and smaller outer dia.) Suitable cable size Stranded cable between 0.3~0.75 m² (2.8mm and smaller outer dia.) Common method Suitable cable size Stranded cable between 0.3~0.75 m² (2.8mm and smaller outer dia.) Current consumption(^{mA}) Current consumption(^{mA}) 20mA Contact Disck Contact Operation display LED On with Input On External connection method 9point Terminal strip connector (M3 X 6 screws) TBB TBB TBB On rate 90 70 0.13 kg TBB TBB<	Off voltage / Off of	current	AC30V and lower / 1 mA and low	er (50 Hz,60 Hz)					
Response time On \rightarrow Off 25 ms and lower(AC200V 50 Hz, 60 Hz) Insulation withstand voltage AC2830V ms/3 Cycle (altitude 2000m) Insulation resistance 10 M2 and higher by Insulation ohmmeter Common method 8 points / COM Suitable cable size Stranded cable between 0.3-0.75 mf (2.8mm and smaller outer dia.) Suitable camped terminal R1.25-3 (Sleeve built-in clamped terminal is not available) Current consumption(mA) 20mA Operation display LED On with Input On External connection method 9point Terminal strip connector (M3 X 6 screws) Weight 0.13 kg Terminal block Contact Directive contact Veight 0.13 kg Terminal block Contact TB1 0 TB2 1 TB3 2 TB4 3 TB5 4 TB6 5 TB9 COM M M M M M M M M M	Input resistance		Approx. 12 kΩ(60 Hz), approx. 15	kΩ(50 ^H z)					
On → Off 25 ms and lower(AC2200V 50 H2,60 H2) Insulation withstand voltage AC2830V ms/3 Cycle (altitude 2000m) Insulation resistance 10 № and higher by Insulation ohmmeter Common method 8 points / COM Suitable cable size Stranded cable between 0.3–0.75 m² (2.8mm and smaller outer dia.) Suitable cable size Stranded cable between 0.3–0.75 m² (2.8mm and smaller outer dia.) Suitable cable size Stranded cable between 0.3–0.75 m² (2.8mm and smaller outer dia.) Current consumption(m²) 20mA Operation display LED On with Input On External connection method 9point Terminal strip connector (M3 X 6 screws) Weight 0.13 kg Terminal block Contact TB1 0 TB2 1 TB3 2 TB4 3 TB5 4 TB6 5 TB7 6 TB8 7 TB9 COM On rate 90 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0	Deen en es time	$Off \rightarrow On$	15 ms and lower(AC200V 50 $^{ m Hz}$,6	60 Hz)					
Insulation resistance Insulation resistance Common method Suitable cable size Stranded cable between 0.3–0.75 m ^{rrf} (2.8mm and smaller outer dia.) Suitable cable size Suitable cable size Stranded cable between 0.3–0.75 m ^{rrf} (2.8mm and smaller outer dia.) Suitable cable size Suitable cable size Suitable cable size Surrent consumption(m ^A) Operation display LED On with Input On External connection method Spoint Terminal strip connector (M3 X 6 screws) Weight On rate (%) On rate	Response time	$On \rightarrow Off$	25 ms and lower(AC200V 50 Hz,6	60 Hz)					
Common method 8 points / COM Suitable cable size Stranded cable between 0.3-0.75 m ^r (2.8mm and smaller outer dia.) Suitable cable size Stranded cable between 0.3-0.75 m ^r (2.8mm and smaller outer dia.) Suitable clamped terminal R1.25-3 (Sleeve built-in clamped terminal is not available) Current consumption(mA) 20mA Operation display LED On with Input On External connection method 9point Terminal strip connector (M3 X 6 screws) Weight 0.13 kg Terminal Contact TB1 0 TB2 1 TB3 2 TB4 3 TB5 4 TB6 5 TB7 6 TB8 7 TB9 COM 80 40 0 10 20 30 40 49 [°] C AC264V 55 55	Insulation withsta	ind voltage	AC2830V rms/3 Cycle (altitude 20	000m)					
Suitable cable size Stranded cable between 0.3-0.75 ^{min} (2.8mm and smaller outer dia.) Suitable clamped terminal R1.25-3 (Sleeve built-in clamped terminal is not available) Current consumption(^{mA}) 20mA Operation display LED On with Input On External connection method 9point Terminal strip connector (M3 X 6 screws) Weight 0.13 kg Circuit diagram Terminal block Contact block Contact block Contact block Contact block TB1 0 TB2 1 TB3 2 TB4 3 TB5 4 TB5 4 TB5 4 TB7 6 TB7 6 TB8 7 TB9 COM On rate 60 50 40 0 10 20 30 40 50 55	Insulation resista	nce	$10^{M\!\Omega}$ and higher by Insulation of	nmeter					
Suitable clamped terminal Current consumption(^{mA}) Operation display LED On with Input On External connection method 9point Terminal strip connector (M3 X 6 screws) Weight 0.13 kg Circuit diagram Photocoupler DCSV Veight Circuit diagram Photocoupler DCSV TB1 0 TB2 1 TB3 2 TB4 3 TB5 4 TB5 4 TB5 4 TB7 6 TB7 6 TB7 6 TB8 7 TB9 COM Com rate (%) 0 10 20 30 40 50 55	Common method	d	8 points / COM						
Current consumption(mA) 20mA Operation display LED On with Input On External connection method 9point Terminal strip connector (M3 X 6 screws) Weight 0.13 kg Terminal strip connector (M3 X 6 screws) Weight 0.13 kg Circuit diagram Terminal block Contact TB1 0 TB2 1 TB2 1 TB2 1 TB2 1 TB2 4 OCM Actionzav * COM : TB9 On rate (%) 0 Operation display Operation display TB3 Operation display COM TB2 TB4 TB7 COM Operation display Operation display Operation display Operation display <td col<="" td=""><td>Suitable cable siz</td><td>ze</td><td>Stranded cable between 0.3~0.75</td><td>5 mm² (2.8mm and</td><td>smaller outer</td><td>dia.)</td></td>	<td>Suitable cable siz</td> <td>ze</td> <td>Stranded cable between 0.3~0.75</td> <td>5 mm² (2.8mm and</td> <td>smaller outer</td> <td>dia.)</td>	Suitable cable siz	ze	Stranded cable between 0.3~0.75	5 mm² (2.8mm and	smaller outer	dia.)		
Operation display LED On with Input On External connection method 9point Terminal strip connector (M3 X 6 screws) Weight 0.13 kg Terminal strip connector (M3 X 6 screws) Weight 0.13 kg Circuit diagram Photocoupler DCSV TB1 0 TB2 1 TB2 1 TB3 2 TB4 3 TB5 4 TB6 5 TB7 6 TB8 7 TB9 COM On rate 90 0 10 20 30 49 °C AC264V AC264V Image: Com Image: Com	Suitable clamped	terminal	R1.25-3 (Sleeve built-in clamped	terminal is not ava	ailable)				
External connection method Spoint Terminal strip connector (M3 X 6 screws) Weight 0.13 kg Circuit diagram Circuit diagram Photocoupler DC5V TB1 0 TB2 1 TB3 2 TB4 3 TB5 4 TB5 4 TB5 4 TB5 4 TB6 5 TB7 6 TB8 7 TB9 COM 0 n rate (%) 50 0 10 20 30 40 50 55	Current consump	otion(^{mA})	20mA						
Weight 0.13 kg Circuit diagram Terminal block Contact Image: Contact diagram Terminal block Contact Image: Contact diagram TB1 0 Image: Contact diagram TB2 1 Image: Contact diagram TB2 1 Image: Contact diagram TB2 1 Image: Contact diagram TB3 2 Image: Contact diagram TB2 1 Image: Contact diagram TB3 2 Image: Contact diagram TB3 2 Image: Contact diagram TB3 2 Image: Contact diagram TB4 3 Image: Contact diagram TB5 4 Image: Contact diagram TB7 6 Image: Contact diagram Image: Contact diagram Image: Contact diagram Image: Contact diagram Image: Contact diagram Image: Contact diagram Image: Contact diagram Image: Contact diagram Image: Contact diagram Image: Contact diagram Image: Contact diagram Image: Contact diagram <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td></tr<>									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	External connect	ion method	9point Terminal strip connector (N	/I3 X 6 screws)					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Weight		0.13 kg			Γ			
$\begin{array}{c} \begin{array}{c} & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $		Circuit	diagram		Contact				
$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$				TB1	0				
$\begin{array}{c cccc} & & & & & & & & & & & & & & & & & $		<u>31</u>	• • •	TB2	1				
$\begin{array}{c} \hline \\ \hline $				ТВЗ	2				
$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$									
$\begin{array}{c} & & & \\ & \text{COM: TB9} \\ & & \text{COM: TB9} \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & & \\ &$									
* COM : TB9 * COM : TB9 0			Circuit						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	AC110/220V				5				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	* COM : TB9			TB7	6				
90 00 rate (%) 50 40 0 10 20 30 40 50 55 10 10 10 10 10 10 10 10 10 10			27 °0 40 °0	TB8	7				
$\begin{array}{c cccc} & & & & & & & & & & & & & & & & & $	90			TB9	COM				
On rate 70 60 50 50 40 0 10 20 30 40 50 55	80		AC240V						
On rate (%) 50 40 0 10 20 30 40 50 55 AC264V	70								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	On rate 60								
	(%)								
	40								
Ambient temp(°C)		Ambient							
Derating level		Derating	g level						

٦

9.2.9 8 point AC220V input module

	Module type		AC input mo	dule	
Spec.			XGI-A210	;	
Input point		8 points			
Insulation metho	d	Photo coupler insulation			
Rated input volta	ge	AC100-240V(+10/-15%) 50/60 Hz	z(±3 Hz) (5% and	lower distortior	ו)
Rated input curre	ent	Approx. 17 mA (AC200,60 Hz), a	pprox. 14 mA (AC	C200,50 Hz)	
Inrush current		Max. 500 mA 1 ms and lower(AC2	264V)		
Input derating		Refer to the below derating level			
On voltage / On o	current	AC80V and higher / 5 mA and hig	her (50 Hz, 60 Hz)		
Off voltage / Off of	current	AC30V and lower / 1 mA and low	er (50 Hz ,60 Hz)		
Input resistance		Approx. 12 kΩ(60 Hz), approx. 15	kΩ(50 ^H z)		
Dooponoo timo	$Off \rightarrow On$	15 ms and lower(AC200V 50 $^{\rm Hz},$	60 ^H z)		
Response time	$On \rightarrow Off$	25 ms and lower(AC200V 50 $^{\text{Hz}},$	60 ^H z)		
Insulation withsta	ind voltage	AC2830V rms/3 Cycle (altitude 20	000m)		
Insulation resista	nce	$10 ^{M\Omega}$ and higher by Insulation of	Immeter		
Common metho	d	1 point / COM			
Suitable cable siz	ze	Stranded cable between 0.3~0.7	5 ^{mm*} (2.8mm and	smaller outer	dia.)
Suitable clamped	terminal	R1.25-3 (Sleeve built-in clamped	terminal is not av	ailable)	
Current consump	otion(^{mA})	20mA			
Operation display	/	LED On with Input On			
External connect	ion method	18 point Terminal strip connector	(M3 X 6 screws)		
Weight		0.13 kg			
	Circuit	diagram	Terminal block	Contact	
			TB1	0	XGI-A21C
1	B1 B1	Photocoupler 🔶 DC5V 🕈	TB2	COM0	
\sim	╺╺╴╴╴┺┄╇┤(╼╸╸		TB3	1	
			TB4	COM1	
	B2	Internal circuit	TB5	2	
AC110/220V			TB6	COM2	
>			TB7	3	
		37℃ 4 <u>9</u> ℃	TB8	COM3	
⁹⁰			TB9	4	
80 -		AC240V	TB10	COM4	
70 ·		+ + + \ + \	TB11	5	
On rate (%) 60		AC264V	TB12	COM5	
50			TB13	6	
40		+ + + + + •	TB14	COM6	
ļ			TB15	7	N.C F
0	10 20	30 40 50 55	TB16	COM7	220VAC 17mA A21C
		temp(°C)	TB17	NC	
	Deratin	g level	TB18	NC	

9.2.10 8 point AC220V isolated input module

9.3 Digital Output Module Spec.

9.3.1 8 point relay output module

	Module type		Relay	/ output module					
Spec.			XGQ-RY1A						
Output point		8 points							
Insulation met	hod	Relay insulation							
Rated load vol	tage/current	DC24V 2A(resistar	nce load) / AC220V 24	A(COSΨ = 1)					
Min. load volta	ge / current	DC5V/1mA							
Max. load volta	age / current	AC250V, DC125V							
Leakage curre	ent at Off	0.1mA (AC220V, 6	60Hz)						
Max. switching	g frequency	3,600 times/hr							
Surge killer		None							
	Mechanical	20 million and more	e times						
		Rated load voltage	current 100 thousand	and more times					
Life		AC200V / 1.5A, AC	C240V / 1A (COSΨ =	0.7) 100 thousand and more times					
	Electrical	AC200V / 1A, AC2	240V / 0.5A (COSΨ =	0.35) 100 thousand and more times					
		DC24V / 1A, DC10	00V / 0.1A (L / R = 7m)	s) 100 thousand and more times					
Response	$Off \rightarrow On$	10 ms and lower							
time	$On \rightarrow Off$	12 ms and lower	12 ms and lower						
Common met	hod	1 point/ 1COM (Inc	1 point/ 1COM (Independent contact)						
Current consu	mption	260mA (when every point is On)							
Operation disp	olay	LED On with outpu	ıt On						
External conne	ection method	18 point Terminal s	strip connector (M3 X 6	6 screws)					
Weight		0.13kg							
	C	Circuit diagram		Terminal Contact					
		-		TB1 0					
				TB2 COM					
	ှ DC5V			TB3 1 TB4 COM					
LED (\Rightarrow			TB5 2					
	Ŧ		TB1	TB6 COM					
	Internal								
	circuit								
			AC 220V	TB11 5 Sold 6 6 7 <th7< th=""> <th7< th=""> 7</th7<></th7<>					
				TB12 COM Com Car					
			\langle	TB14 COM					
			-						
				TB16 COM TB17 NC					
				TB17 NC TB18 NC					

	Module type		Relay ou	Itput modu	ule					
Spec.			XGQ-RY2A							
Output point		16 points								
Insulation meth	nod	Relay insulation								
Rated load vol	tage/current	DC24V 2A(resistance	load) / AC220V 2A(C	OSΨ=1)						
Min. load volta	ge / current	DC5V/1mA								
Max. load volta	age / current	AC250V, DC125V								
Leakage curre	nt at Off	0.1mA (AC220V, 60H	z)							
Max. switching	frequency	3,600 times/hr								
Surge killer		None								
	Mechanical	20 million and more tir	nes							
		Rated load voltage/cu	rrent 100 thousand an	d more times	3					
Life	Ele etcie el	AC200V / 1.5A, AC24	0V / 1A (COSΨ = 0.7)	100 thousar	nd and more	e times				
	Electrical	AC200V/1A, AC24	$0V / 0.5A (COS\Psi = 0.3)$	35) 100 thou	sand and m	nore times				
		DC24V / 1A, DC100V	/0.1A (L/R = 7ms) 1	00 thousand	and more t	imes				
Response	$Off \rightarrow On$	10 ms and lower								
time	$On \rightarrow Off$	12 ms and lower								
Common meth	nod	16 point/ 1COM								
Current consu	mption	500mA (when every point is On)								
Operation disp	lay	LED On with output O	n							
External conne	ection method	18point Terminal strip	connector (M3 X 6 scr	ews)						
Weight		0.17kg								
	C	Circuit diagram		Terminal block	Contact					
				TB1	0					
				TB2 TB3	1 2					
	⊖- DC5V			TB3	3					
LED (X			TB5	4					
	<u> </u>	TB1		TB6	5					
- I	nternal			TB7 TB8	6 7					
		\$ I		TB9	8					
			\leq	TB10	9					
	_	TB16		TB11	10					
		COM		TB12	11					
				TB13	12					
			AC 220V	TB14	13					
				TB15	14					
		•	* COM : TB17	TB16	15					
				TB17	COM NC					
				TB18	NC					

9.3.2 16 point relay output module

	Module		Relay	output module					
type Spec.			XGQ-RY2B						
Output point		16 points							
Insulation me	ethod	Relay insulation							
Rated load vo	oltage/current	DC24V 2A(resista	nce load) / AC220V 2A(COSΨ = 1)					
Min. load volt	age / current	DC5V/1mA							
Max. load vol	ltage / current	AC250V, DC125V	1						
Leakage curr	rent at Off	0.1mA (AC220V, 6	60Hz)						
Max. switchir	ng frequency	3,600 times/hr							
Surge killer		Varistor (387 ~ 473	3V), C.R absorber						
	Mechanical	20 million and mor	re times						
		Rated load voltage	e/current 100 thousand a	and more times					
Life		AC200V / 1.5A, A	C240V / 1A (COSΨ = 0.	7) 100 thousand and mo	re times				
	Electrical	AC200V / 1A, AC2	240V / 0.5A (COSΨ = 0.	35) 100 thousand and m	ore times				
		DC24V / 1A, DC10	00V / 0.1A (L / R = 7ms)	100 thousand and more	times				
Response	$Off \rightarrow On$	10 ms and lower							
time	$On \rightarrow Off$	12 ms and lower	12 ms and lower						
Common me	thod	16 point/ 1COM							
Current cons	umption	500mA (when eve	ery point is On)						
Operation dis	play	LED On with output	ut On						
External conr	nection method	18 point Terminal	strip connector (M3 X 6 s	screws)					
Weight		0.19kg							
		Circuit diagram		Terminal block Contact					
				TB1 0					
			7	TB2 1					
	⊖ DC5V			TB3 2					
LED	4			TB4 3 TB5 4					
	Ψ			TB6 5					
		, _		TB7 6					
	Internal	╸╷╷ ╨╴╣╶╴		TB8 7					
	circuit			TB9 8					
		•	тв16	TB10 9					
				TB11 10 TB12 11					
				TB12 11					
				TB13 12					
			_	TB15 14					
			* COM : TB17	TB16 15					
				TB17 COM					
				TB18 NC					

٦

9.3.3 16 point relay output module (Surge Killer built-in type)

	odule type		Triac o	output modul	е				
Spec.		XGQ-SS2A							
Output point		16 points							
Insulation met	thod	Photo coupler ins	ulation						
Rated load vo	oltage	AC 100-240V (50)/60 Hz)						
Max. load volt	tage	AC 264V							
Max. load cur	rent	0.6A / 1 point, 4A	/1COM						
Min. load curr	ent	20 mA							
Leakage curre	ent at Off	2.5 mA (AC 220V	′ 60 Hz)						
Max. inrush c	urrent	20A / Cycle and lo	ower						
Max. voltage	drop at On	AC 1.5V and lowe	er (2A)						
Surge killer		Varistor (387 ~ 47	′3V), C.R absorber						
Response	$Off \rightarrow On$	1 ms and shorter							
time	$On \rightarrow Off$	0.5 Cycle + 1 ms	and shorter						
Common met	thod	16 point/ 1 COM							
Current consu	umption	300 mA (when ev	very point is On)						
Operation dis	play	LED On with outp	out On						
External conn	ection method	18point Terminal	strip connector (M3 X 6 s	screw)					
Weight		0.2 kg							
	(Circuit diagram		Terminal block	Contact				
				TB1	0				
			_	TB2	1				
	⇔DC5V ↔			TB3	2				
LED	\downarrow			TB4	3				
				TB5	4 5				
	;	·····		TB6 TB7	6				
	Internal	L⊥≑i⊥		TB7	7				
	circuit	新不向行		TB9	8				
				TB10	9				
	 L	'		TB10	10				
	Tria			TB12	11				
				TB13	12				
			AC110/220V	TB14	13				
				TB15	14				
			*COM . TD47	TB16	15				
			*COM : TB17	TB17	COM				
				TB18	NC				

9.3.4 16 point Triac output module

	Module type		Transistor	output m	nodule	
Spec.			XGO	ຊ-TR2A		
Output point		16 points				
Insulation method	1	Photo coupler insulation				
Rated load voltag	e	DC 12/24V				
Operating load vo	oltage range	DC 10.2 ~ 26.4V				
Max. load current		0.5A / 1point, 4A / 1COM				
Leakage current a	at Off	0.1mA and lower				
Max. inrush curre	nt	4A / 10 ms and lower				
Max. voltage drop	o at On	DC 0.3V AND LOWER				
Surge killer		Zener diode				
Fuse		4A×2(not replaceable)(Fuse of	ap.:50A)			
Fuse disconnection	on display	Yes(If a fuse is burnt out, it tra If external power supply is off,				n)
Response time	$Off \rightarrow On$	1 ms and shorter				
	$On \rightarrow Off$	1 ms and shorter (Rated load	, resistance loa	ad)		
Common method	1	16 point/ 1COM				
Current consump	tion	70mA (when every point is O	n)			
External power	Voltage	DC12/24V \pm 10% (4 Vp-p and	d lower ripple v	/oltage)		
supply	Current	10mA and lower (if connected	to DC24V)			
Operation display	,	LED On with output On				
External connecti	on method	18point Terminal strip connec	ctor			
Weight		0.11kg				
	Circui	t diagram	Т	erminal block	Contact	
				TB1	0	
Dor				TB2	1	
⊖ DC5	V			TB3	2	
	D	TB1 L	\vdash	TB4	3	
				TB5	4	
Internal				TB6	5	
circuit		$\sqrt{1}$ (TB7	6	
on our	$ \mathbf{\Psi} \cdot \mathbf{\hat{\gamma}} \rangle$			TB8	7	
				TB9	8	
			- -	TB9 TB10	8 9	
	[TB10	9	
		тві7		TB10 TB11 TB12	9 10	
		R Fuse COM DC12/24V		TB10 TB11 TB12 TB13	9 10 11	
			8	TB10 TB11 TB12 TB13 TB14	9 10 11 12	
		R Fuse COM DC12/24V	8	TB10 TB11 TB12 TB13 TB14 TB15	9 10 11 12 13	
		R Fuse COM DC12/24V	8	TB10 TB11 TB12 TB13 TB14	9 10 11 12 13 14	

٦

9.3.5 16 point transistor output module (sink type)

Output point 32 point Insulation method Photo coupler insulation Rated load voltage DC 12 / 24 V Operating load voltage range DC 10.2 ~ 26.4 V Max. load current 0.1/1 / 1point, 2A / 1COM Leakage current at Olf 0.1mA and lower Max. innush current 0.7A / 10 ms and lower Max. voltage drop at On DC 0.2 V and lower Surge killer Zener diode Response time Off → On Off → On 1 ms and shorter Common method 32 points / 1COM Current consumption 130mA (when every point is On) External power Voltage Operation display LED On with Input On External connection method 40 Pin Connector Suitable cable size 0.3 m ² O 0 A20 B15 5 B17 3 B18 2 B19 11 B11 9 Current 0.1 kg Circuit diagram No Contact	Spec.	Module type	Transistor output module XGQ-TR4A									
Insulation Photo coupler insulation Rated load voltage DC 12/24V Operating load voltage range DC 10.2 - 28.4V Max. load current 0.1A/ 1point, 2A / 1COM Leakage current at Off 0.1mA and lower Max. insist current 0.7A / 10 ms and lower Max. woltage drop at On DC 0.2V and lower Surge killer Zener diode Common method 32 points / 1COM Current consumption 130mA (when every point is On) External power Voltage DC12/24V ± 10% (4 Vp-p and lower ripple voltage) Suitable cable size 0.3 mif Vweight 0.1 kg Circuit diagram No Contact No Contact No Suitable cable size 0.3 mif Vweight 0.1 kg Circuit diagram No Contact No Contact No Bit 4 14 12 Bit 4 14 12 No Contact No Contact No Contact No No No <tr< td=""><td colspan="4"></td><td></td><td>X-17 X</td><td></td><td></td><td></td><td></td></tr<>						X-17 X						
Rated load voltage DC 12 / 24V Operating load voltage range DC 10.2 - 26.4V Max. load current 0.1A / 1point, ZA / 1COM Leakage current at Off 0.1m A and lower Max. inush current 0.7A / 10 ms and lower Max. voltage drop at On DC 0.2V and lower Surge killer Zener diode Response time Off → On 1 ms and shorter On → Off 1 ms and shorter Response time Off → On On → Off 1 ms and shorter Carner diode Current consumption 130mA (when every point is On) External power Voltage DC12/24V ± 10% (4 Vp- p and lower ripple voltage) Supply LED On with Input On External connection method 40 Pin Connector Suitable cable size 0.3 mt ² No Contact No Contact B15 5 A15 21 B16 A16 B17 A13 A23 B16 1 A13 B22 A0 A16 B18 B17 A13 B18 B18 B17 B13												
Operating load voltage range DC 10.2 - 26.4V Max. load current 0.1A/1point, 2A/1COM Leakage current at Off 0.1mA and lower Max. innush current 0.7A/10 ms and lower Max. voltage drop at On DC 0.2V and lower Surge killer Zener diode Response time Off → On 1 ms and shorter On → Off 1 ms and shorter (Rated load, resistance load) Common method Current consumption 130mA (when every point is On) External power Voltage DC12/24V ± 10% (4 Vpp and lower ripple voltage) Current consumption Supply LED On with Input On External connection method 40 Pin Connector Suitable cable size 0.3 mf No Contact No Veight 0.1 kg 0.1 kg 0.4 Pin Connector 118 5 5 A15 21 B16 5 5 A15 21 B17 3 AA17 19 B16 5 5 A15 21 B18 7 A13 224 B11 9 A11 256 B00 11 A00 277 B00 11 A00 270 B00 A00 A00 A00 B00 0 0 A33 A16												
Max. load current 0.1A / 1point, 2A / 1COM Leakage current at Off 0.1mA and lower Max. inrush current 0.7A / 10 ms and lower Max. voltage drop at On DC 0.2V and lower Surge killer Zener dlode Response time Off → On Off → On 1 ms and shorter Common method 32 points / 1COM Current consumption 130mA (when every point is On) External power Voltage Suitable cable size 0.3 mf Weight 0.1 kg Off → LED 0.1 kg Circuit diagram No Contact No Meight 0.1 kg Circuit diagram No Contact No Statis Statis Bit 2.4 18 Bit												
Leakage current at Off 0.1mA and lower Max. innush current 0.7A / 10 ms and lower Max. voltage drop at On DC 0.2V and lower Surge killer Zener diode Response time Off → On 1 ms and shorter On → Off 1 ms and shorter (Rated load, resistance load) Common method 32 points / 1COM Current consumption 130mA (when every point is On) External power Voltage DC12/24V ± 10% (4 Vp-p and lower ripple voltage) Supply UED On with Input On External connection method 40 Pin Connector Suitable cable size 0.3 mf Weight 0.1 kg Bata A A11 Bata A A12 Bata Bata Bata A A17 Bata Bata A A14 A22												
Max. inrush current 0.7A/10 ms and lower Max. voltage drop at On DC 0.2V and lower Surge killer Zener cliode Response time Off → On 1 ms and shorter (Rated load, resistance load) Common method 32 points/1COM Current consumption 130mA (when every point is On) External power Voltage Supply Current Operation display LED On with Input On External connection method 40 Pin Connector Suitable cable size 0.3 mf Weight 0.1 kg Max define Att A f16 B18 2 Att B B17 3 Af1 B18 2 Att B B17 3 Af1 B18 2 Att B B17 3 Af1 B18 2 Att B B19 11 Af19 B17 3 Af1 B18 2 Att B B19 11 Af19 B11 10 Af10 B12 8 Af12 B13 7 Af13		Off										
Max. voltage drop at On DC 0.2V and lower Surge killer Zener diode Response time Off → On 1 ms and shorter On → Off 1 ms and shorter Catent load, resistance load) Common method 32 points / 1COM Current consumption 1 30mA (when every point is On) External power Voltage DC 12/24V ± 10% (4 VPp and lower ripple voltage) Supply Current 10mA and lower (if connected to DC24V) Operation display LED On with Input On External connection method 40 Pin Connector Suitable cable size 0.3 mf No Contact No Contact Weight 0.1 kg Bit 2 A18 Bit Bit A14 A18 Bit 2 A18 Bit Bit A14 A18 Bit Bit A14 A12 Bit Bit Bit A14 A18 Bit Bit Bit A14 A18 Bit Bit Bit A14 A18 Bit Bit A11 D2 A13	-											
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		-										
$\begin{tabular}{ c c c c c c } \hline \hline $ 0 \mbox{fi} \rightarrow 0 \mbox{fi} & 1 \mbox{ ms and shorter} \\ \hline $ 0 \mbox{fi} \rightarrow 0 \mbox{fi} & 1 \mbox{ ms and shorter} (Rated load, resistance load) \\ \hline $ 0 \mbox{fi} \rightarrow 0 \mbox{fi} & 1 \mbox{ms and shorter} (Rated load, resistance load) \\ \hline $ 0 \mbox{fi} \rightarrow 0 \mbox{fi} & 1 \mbox{ms and shorter} (Rated load, resistance load) \\ \hline $ 0 \mbox{fi} \rightarrow 0 \mbox{fi} & 1 \mbox{ms and shorter} (Rated load, resistance load) \\ \hline $ 0 \mbox{fi} \rightarrow 0 \mbox{fi} & 1 \mbox{ms and shorter} (Rated load, resistance load) \\ \hline $ 0 \mbox{fi} \rightarrow 0 \mbox{fi} & 1 \mbox{ms and shorter} (Pachella \mbox{fi} \rightarrow 0 \mbox{fi} \mbox{fi} \rightarrow 0 \mbox{fi} f$												
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$												
Common method 32 points / 1COM Current consumption 130mA (when every point is On) External power Voltage DC12/24V ± 10% (4 Vp-p and lower ripple voltage) Supply Current 10mA and lower (if connected to DC24V) Operation display LED On with Input On External connection method 40 Pin Connector Suitable cable size 0.3 mtr Weight 0.1 kg No Corrcuit diagram No Contact No Mais A17 B16 A 141 B17 S B18	Response time			ragioton								
Current consumption 130mA (when every point is On) External power Voltage DC12/24V ± 10% (4 Vp-p and lower ripple voltage) Supply Current 10mA and lower (if connected to DC24V) Operation display LED On with Input On External connection method 40 Pin Connector Suitable cable size 0.3 mt² Weight 0.1 kg Circuit diagram No Contact No Math A16 B17 A18 B17 B18 B17 B14 </td <td></td> <td>On→Oπ</td> <td>· ·</td> <td>resistan</td> <td>ce load)</td> <td></td> <td></td> <td></td> <td></td> <td></td>		On→Oπ	· ·	resistan	ce load)							
External power supply Voltage DC12/24V ± 10% (4 Vp-p and lower ripple voltage) Operation display LED On with Input On External connection method 40 Pin Connector Suitable cable size 0.3 mm² Weight 0.1 kg Circuit diagram No Contact No Contact No Contact B19 1 A19 A17 B16 4 A16 A16 B15 5 A15 21 B14 6 A14 22 B13 7 A13 23 B14 6 A14 22 B13 7 A13 23 B11 9 A11 25 B11 9 A11 25 B10 10 A10 26 B03 NO Could and and and and and and and and and an			•									
Supply Current 10mA and lower (if connected to DC24V) Operation display LED On with Input On External connection method 40 Pin Connector Suitable cable size 0.3 mm² Weight 0.1 kg No Contact	Current consumption											
Operation display LED On with Input On External connection method 40 Pin Connector Suitable cable size 0.3 mm² Weight 0.1 kg Decrov Circuit diagram No Contact No Suitable cable size 0 Mail B20 B20 0 B20 0 B20 0 B20 0 B20 0 B20 0 B21 A11 B11 9 B13 7 B21 8 <t< td=""><td></td><td>Voltage</td><td colspan="10">DC12/24V \pm 10% (4 Vp-p and lower ripple voltage)</td></t<>		Voltage	DC12/24V \pm 10% (4 Vp-p and lower ripple voltage)									
External connection method 40 Pin Connector Suitable cable size 0.3 mm² Weight 0.1 kg Circuit diagram No Contact No Contact DC5V 0.3 mm² 0.4 20 16 B18 2 A18 18 B16 4 A16 20 B16 4 A16 20 B15 5 A15 21 B16 4 A16 20 B13 7 A13 23 B11 9 A11 25 B13 7 A13 23 B11 9 A11 25 B11 9 A11 25 B10 10 A10 26 B09 11 A09 27 B08 12 A08 28 B07 13 A07 29 B06 14 A06 30 B06	supply	Current	10mA and lower (if connected to DC24V)									
Suitable cable size 0.3 mm² Weight 0.1 kg Circuit diagram No Contact No Contact B20 0 A20 16 B19 1 A19 17 B18 2 A18 18 B17 3 A17 19 B16 4 A16 20 B15 5 A15 21 B16 A14 A20 B13 7 A13 23 B14 9 A11 25 B13 7 A13 23 B11 9 A11 25 B10 10 A10 26 B01,B02 Com A06 30 B01,B02 Com A07 29 B06 14 A06 30 B01 D1 A07 29 B06 14 A06 30 B01 A02	Operation display		LED On with Input On									
Weight 0.1 kg No Contact No Contact B20 0 A20 16 B19 1 A19 17 B18 2 A18 18 B17 3 A17 19 B16 4 A16 20 B15 5 A15 21 B16 4 A12 24 B13 7 A13 23 B14 6 A14 22 B13 7 A13 23 B14 B10 10 A10 26 B09 11 A09 27 B06	External connection	n method	40 Pin Connector									
Circuit diagram No Contact No Contact No Contact DC5V B20 0 A20 16 B19 1 A19 A19 B17 3 A17 19 B18 2 A18 18 B19 B16 4 A16 20 A18 A17 B18 B17 3 A17 19 B18 B17 A16 A16 0 A18 A17 0 A16 0 A14 0 A14 0 A13 0 A14 0 A13 0 0 A14 0 A14 0 A14 0 0 A12 0 A14	Suitable cable size		0.3 mm²									
DC5V B20 0 A20 16 B19 1 A19 17 B18 2 A18 18 B17 3 A17 19 B16 4 A16 20 B15 5 A15 21 B14 6 A14 22 B13 7 A13 23 B14 9 A11 25 B11 9 A11 26 B00 10 A10 26 B07 13 A07 29 B08 12 A08 30 B07 13 A07 29 B06 14 A06 30 B06 14 A06 3	Weight		0.1 kg									
DC5V B19 1 A19 17 B18 2 A18 18 B17 3 A17 19 B16 4 A16 20 B17 B16 4 A16 0 A18 B15 5 A15 21 B16 B17 B18 0 A17 B14 6 A14 22 B13 7 A13 23 B14 0 A16 B12 8 A12 24 B13 0 A14 0 A14 B12 8 A12 24 B15 0 A14 0 A14 B12 8 A12 24 B13 0 A14 0 A14 B11 9 A11 25 B14 0 A14 0 A14 B11 9 A11 25 B14 B0 0 A09 0 A09 0 A08 0 A14 0 A14 0 A14 0 A14 0 A14 0		Circuit diagra	m	No	Contact	No	Contact					
DC5V B18 2 A18 18 B19 0 0 A19 Internal B16 4 A16 20 B17 3 A17 19 B18 0 0 A19 B16 4 A16 20 B17 3 A17 19 B18 0 0 A18 B15 5 A15 21 B16 4 A16 A17 B16 0 0 A18 B14 6 A14 22 B15 0 0 A14 B13 7 A13 23 B14 0 0 A14 B12 8 A12 24 B13 0 0 A12 B11 9 A11 25 B10 10 A10 26 B10 0 0 A08 B01,B02 COM COM COM COM A07 29 B06 0 A06 B05 15 A05 31 B03 NC A03 NC A03 <td></td> <td></td> <td></td> <td>B20</td> <td>0</td> <td></td> <td>16</td> <td></td> <td>\sim</td> <td></td>				B20	0		16		\sim			
B18 2 A18 16 B19 0 0 A19 Internal B20 I B16 4 A16 20 B17 3 A17 19 B18 0 0 A13 B16 4 A16 20 B15 5 A15 21 B16 0 0 A16 B14 6 A14 22 B13 7 A13 23 B14 0 A15 B12 8 A12 24 B13 0 0 A14 B11 9 A11 25 B11 0 0 A12 B10 10 A10 26 B10 0 0 A14 B11 9 A11 A09 27 B00 0 0 A08 B01 10 A10 26 B00 0 A06 A06 B05 15 A05 31 B04 NC A04 A03 B04 0 A03 B04 NC	DC5V							B20	00	A20		
B20 L B16 4 A16 20 A17 Internal B15 5 A15 21 B17 B16 0 A17 Internal Circuit A05 L B13 7 A13 23 B14 6 A14 22 B13 7 A13 23 B14 6 A14 A15 A15 B12 8 A12 24 B13 0 0 A14 A13 B12 0 0 A14 A13 A13 A14 A14 B13 0 0 A14 A15 A14 A14 B13 0 0 A14 A15 A14 A14 B13 0 0 A14 A13 B12 0 0 A14 B13 0 0 A14 B10 0 0 A14 B10 0								B19				
Internal Internal <td< td=""><td></td><td>_</td><td>B20</td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td></td<>		_	B20					-				
Internal Internal <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												
Internal Image: Second sec		┑╶┎──िि─┤ <mark>┊┑</mark> ╡	¥)	B14	6		22	B15		A15		
Circuit A05 L B12 8 A12 24 B12 0 0 A12 B11 9 A11 25 B11 9 A11 25 B11 B10 A10 A10 A11			- <i>(</i>									
A05 B11 9 A11 25 B11 0 0 A11 B10 10 A10 26 B10 0 0 A10 B01,B02 B08 12 A08 28 B07 0 0 A08 B07 13 A07 29 B06 14 A06 30 B06 0 A06 B05 15 A05 31 B03 NC A03 NC B02 0 0 A03 B02 DC12/2 A01 A02 COM B03 NC A03 NC B01 0 0 A03 B02 DC12/2 A02 COM B01 0 0 A03	circuit	(다니) /										
B01,B02 B09 11 A09 27 B09 A09 COM B08 12 A08 28 B07 A07 A07 B06 14 A06 30 B05 0 A07 A06 B05 15 A05 31 B04 NC A04 A03 B03 NC A03 NC B02 DC12/ A02 COM					-		-			A11		
B01,B02 B03 11 A03 27 B03 0 A03 COM B08 12 A08 28 B07 0 A08 B06 14 A06 30 B05 0 A06 B05 15 A05 31 B04 0 0 A04 B04 NC A04 NC B03 NC A03 A02 B02 DC12/ A01 B02 DC12/ A02 COM B01 A01												
COM B07 13 A07 29 B06 14 A06 30 B05 15 A05 31 B04 NC A04 NC B03 NC A03 NC B02 DC12/ A02 A01			B01,B02									
COM I AU7 Z9 B06 0 A06 DC12/24V B06 14 A06 30 B05 B05 B05 B04 NC A04 B03 B04 NC B02 DC12/2 A02 A03 A04 *COM : A02, A01 B02 DC12/2 A02 COM B04 A02 A01												
DC1224V B05 15 A05 31 B04 B04 B04 B03 B04 B03 B03 B03 B02 DC12/2 B03 B0			сом					B06				
* COM : A02, A01 * COM : A02, A01 BO3 NC A03 NC B02 DC12/ A02 COM B04 0 0 A03 B03 NC A03 NC B02 DC12/ A02 COM B04 0 0 A03 B03 A02 B04 A03 B04 A03 B02 A04 NC			DC12/24V									
* COM : A02, A01 B03 NC A03 NC B02 B01 0 0 A02 B01 0 0 A01 A01				_					0 0			
B02 DC12/ A02 COM B01 0 A01			* 0011 100 104									
			^ COM : A02, A01					B01	$ ^{\circ}$	A01		
				B01	24V	A01	COM	1				

9.3.6 32 point transistor output module(sink type)

9.3.7 64 point transistor output module (sink type)

	Module type				Trans	sistor ou	itput mo	dule				
Spec.		XGQ-TR8A										
Output point	64 poin	nts										
Insulation system		Photo	Photo coupler insulation									
Rated load voltage		DC 12	2/24V									
Operating load voltage ra	nge	DC 10).2 ~ 26.4	V								
Max. load current		0.1A/	1point, 2	A/1COM								
Leakage current at Off		0.1m/	A and low	er								
Max. inrush current		0.7A/	10 ms ar	nd lower								
Max. voltage drop at On		DC 0.	2V and lo	wer								
Surge killer		Zener	diode									
Off-	→On	1 ms a	and shorte	er								
Response time On -	→Off	1 ms a	and shorte	er (Rated	load, resi	stance lo	oad)					
Common method			int/ 1CON									
Current consumption		230m	A (when e	every poin	t is On)							
Common method		32 poi	ints / CON	Л								
External power Volta	age	DC12	$/24V \pm 10$)% (4 Vp-r	and low	er ripple	voltage)					
supply Curr	ent	10mA and lower (if connected to DC24V)										
Operation display		LED On with Input On (32point LED on by switching)										
External connection meth	od	40 Pin Connector × 2										
Suitable cable size		0.3 mm [*]	2									
Weight		0.15 k	g									
Circuit diagr	am	No	Contact	No	Contact	No	Contact	No	Contact			
		1B20	0	1A20	16	2B20	32	2A20	48			
e e		1B19	1	1A19	17	2B19	33	2A19	49		\sim	
DC5V		1B18	2	1A18	18	2B18	34	2A18	50	B20	00)
		1B17	3 4	1A17	19 20	2B17	35	2A17	51	B19	0 0	A20 A19
╎┌──┴───┌─@┼╬╬		1B16 1B15	4 5	1A16 1A15	20	2B16 2B15	36 37	2A16 2A15	52 53	B18		A18
Internal ""+		1B13	6	1A13	22	2B13 2B14	38	2A13	54	B17	00	A17
circuit t		1B13	7	1A13	23	2B13	39	2A13	55	B16 B15	0 0	A16
	2A05	1B12	8	1A12	24	2B10	40	2A12	56	Б15 B14	0 0	A15 A14
		1B11	9	1A11	25	2B11	41	2A11	57	B13	0 0	A13
	1B02,1B01	1B10	10	1A10	26	2B10	42	2A10	58	B12	00	A12
	2B02, 2B01	1B09	11	1A09	27	2B09	43	2A09	59	B11	0 0	A11
	T T	1B03	12	1A03	28	2B03	44	2A03	60	B10 B09	0 0	A10 A09
SwitchingOA		1B00	13	1A00	29	2B00 2B07	45	2A07	61	B09 B08	0 0	A09 A08
circuit ^o B	сом	1B07	14	1A06	30	2B07	46	2A06	62	B07	0 0	A07
	DC12/24V	1B05	15	1A05	31	2B00	40	2A05	63	B06	00	A06
		1B03	NC	1A03	NC	2B03	NC	2A03	NC	B05	0 0	A05
A: displaying 0~31 B: displaying 32~6		1B03	NC	1A03	NC	2B03	NC	2A03	NC	B04 B03	0 0	A04 A03
D: displaying 32~6	5	1B02		1A02	-	2B02		2A02	_	B02	00	A02
	*COM : 1A02, 1A01		12/24		COM1		12/24		COM2	B01	1	A01

Mo	dule type	Transistor output module							
Spec.			X	GQ-TR2B					
Output point		16 points							
Insulation method	I	Photo coupler insulation							
Rated load voltag	e	DC 12/24V							
Operating load vo	ltage range	DC 10.2 ~ 26.4V							
Max. load current		0.5A / 1point, 4A / 1COM							
Leakage current a	at Off	0.1mA and lower							
Max. inrush curre	nt	4A / 10 ms and lower							
Max. voltage drop	o at On	DC 0.3V AND LOWER							
Surge killer		Zener diode							
Fuse		4Ax2(not replaceable)(Fu	use cap.:50A)						
Fuse disconnection	on display	Yes(If a fuse is burnt out,	it transfers a sig	inal to CPU a	and LED is o	n)			
Boononaa tima	$Off \rightarrow On$	1 ms and shorter							
Response time	$On \rightarrow Off$	1 ms and shorter (Rated	load, resistance	load)					
Common method		16 point/ 1COM							
Current consump	tion	70mA (when every point	is On)						
External power	Voltage	DC12/24V \pm 10% (4 Vp-	and lower ripp	le voltage)					
supply	Current	10mA and lower (if conne	ected to DC24V)					
Operation display		LED On with output On							
External connecti	on method	18point Terminal strip co	nnector						
Weight		0.12kg							
	Circu	t diagram		Terminal block	Contact				
				TB1	0				
]		TB2	1				
φ D	C5V			TB3	2 3				
		ТВ1		TB4	4				
			$\overline{}$	TB5 TB6	5				
Internal		┘─┤┝┻┚		TB0 TB7	6				
circuit		$\overline{\mathbf{A}}$		TB8	7				
		ТВ16		TB9	8				
		\rightarrow		TB10	9				
			∣ ∎——∳	TB11	10				
			2/24V	TB12	11				
	Ľ,⊢└──	TB18		TB13	12				
	ل 🛉 ام			TB14	13				
			I : TB17	TB15	14				
				TB16	15				
				TB17	COM				
				TB18	0V				

9.3.8 16 point transistor output module (source type)

Spec. XGQ-TR4B Output point 32 points Insulation method Photo coupler insulation Reated load voltage DC 12/24V Operating load voltage range DC 12/24V Operating load voltage range DC 12/24V Operating load voltage range DC 102 ~ 26.4V Max. load current O.11A/1point, 2A/1COM Leakage current at Off O.11A/1point, 2A/1COM Colspan="2">Current Max. inush current A1/1 Orms and shorter Max. voltage drop at On DC 0.3V AND LOWER Surge killer Zener clocle Corrent On \rightarrow Off 1 ms and shorter (Rated load, resistance load) Corrent Common method 32points / 1COM Current consumption 1 30mA (when every point is On) External power Voltage DC 12/24V ± 10% (4 Vp-p and lower ripple voltage) Supply Current 10mA and lower (fit connected to DC24V) Voltage Contact No Set No Suitable contection method 40 Pin Connector Set No Contact No Set No No Contact No Set No A1 A2 A1 A1 A1 A1 A1 A1 A1 A1 <th< th=""><th></th><th>Module type</th><th></th><th>Т</th><th>ransisto</th><th>or output</th><th>module</th><th>)</th><th></th><th></th><th></th></th<>		Module type		Т	ransisto	or output	module)					
Insulation method Photo coupler insulation Rated load voltage DC 12 / 24V Operating load voltage range DC 10 2 ~ 26.4V Max. load current 0.1A / 1point, 2A / 1COM Leakage current at Off 0.1mA and lower Max. inush current 4A / 10 ms and lower Max. inush current 4A / 10 ms and lower Max. inush current 4A / 10 ms and shorter Response time Off → On 1 ms and shorter On → Off 1 ms and shorter 0.100000000000000000000000000000000000	Spec.												
Rated load voltage DC 12/24V Operating load voltage range DC 10.2 - 26.4V Max. load current 0.1A / 1point, 2A / 1COM Leakage current at Off 0.1m A and lower Max. inush current 4A / 10 ms and lower Max. voltage drop at On DC 0.3V AND LOWER Surge killer Zener diode Response time Off → On 1 ms and shorter On → Off 1 ms and shorter (Rated load, resistance load) Common method Common method 32points / 1COM Current onsumption Lexternal power Voltage DC 12/24V ± 10% (4 Vp- p and lower ripple voltage) supply LED On with Input On External connection method 40 Pin Connector Suitable cable size 0.3 m ² Size 0.3 m ² Weight 0.1 kg Size A A18 Big 1 A19 17 Bid 4 A14 22 Bid 6 A14 22 Bid A17 Bid A A14 Bid Bid A A14 Bid A A14 Bid A A14 Bid Bid A A14	Output point		32 points										
Operating load voltage range DC 10.2 - 26.4V Max. load current 0.1A / 1point, 2A / 1COM Leakage current at Olf 0.1mA and lower Max. inrush current 4A / 10 ms and lower Max. inrush current 4A / 10 ms and lower Max. inrush current 4A / 10 ms and lower Max. voltage drop at On DC 0.3V AND LOWER Surge killer Zener cliode Response time Off → On On → Off 1 ms and shorter (Rated load, resistance load) Common method 32points / 1COM Current consumption 130mA (when every point is On) External power Voltage DC12/24V ± 10% (4 Vp-p and lower ripple voltage) Supply LED On with Input On External connection method Suitable cable size 0.3 mf Weight 0.1 kg Eiter al A18 18 B16 4 A16 B17 3 A17 B18 2 A18 B17 3 A17 B18 2 A18 B17 3 A17 B18 2 A18 <	Insulation method		Photo coupler insulation	n									
Max. Load current 0.1A / 1point, 2A / 1COM Leakage current at Olf 0.1MA and lower Max. inrush current 4A / 10 ms and lower Max. inrush current 4A / 10 ms and lower Max. inrush current 4A / 10 ms and lower Max. inrush current 4A / 10 ms and lower Max. inrush current 4A / 10 ms and shorter Max. inrush current 0n - Off 1 ms and shorter 0n - Off 0 n - Off 1 ms and shorter (Rated load, resistance load) Common method 32points / 1COM Current consumption 130mA (when every point is On) External power Voltage DC12/24V ± 10% (4 Vp-p and lower ripple voltage) Supply LED On with Input On External connection method 40 Pin Connector Suitable cable size 0.3 mif Mox Circuit diagram Weight 0.1 kg Bit 2 A18 Bit 3 A17 Bit 3<	Rated load voltage	•	DC 12/24V										
Leakage current at Off 0.1mA and lower Max. inrush current 4A / 10 ms and lower Max. voltage drop at On DC 0.3V AND LOWER Surge killer Zener diode Response time Off → On 1 ms and shorter On → Off 1 ms and shorter (Rated load, resistance load) Common method Current consumption 130mA (when every point is On) External power External power Voltage DC12/24V ± 10% (4 Vp-p and lower ripple voltage) supply Current 10mA and lower (if connected to DC24V) Operation display LED On with Input On External connection Suitable cable size 0.3 mf Weight 0.1 kg 10 kg For port of the port of the port is On po	Operating load volt	age range	DC 10.2 ~ 26.4V										
Max. inrush current 4A / 10 ms and lower Max. voltage drop at On DC 0.3V AND LOWER Surge killer Zener diode Response time Off → On 1 ms and shorter Common method 32points / 1COM Current consumption 130mA (when every point is On) External power Voltage DC12/24V ± 10% (4 Vp-p and lower ripple voltage) supply Current 10mA and lower (f connected to DC24V) Operation display LED On with Input On External connection method 40 Pin Connector Suitable cable size 0.3 mrf Weight 0.1 kg External connection method 40 Pin Connector Suitable cable size 0.3 mrf Weight 0.1 kg External connection method 410 Pin Connector Suitable cable size 0.3 mrf Weight 0.1 kg External connection method 40 Pin Connector B11 A 11 22 B12 8 A 12 24 B14 6 A 14 22 B11 0 A11 25 B03 <td< td=""><td>Max. load current</td><td></td><td>0.1A / 1point, 2A / 1CC</td><td>M</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Max. load current		0.1A / 1point, 2A / 1CC	M									
$\begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Leakage current at	Off	0.1mA and lower										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Max. inrush current	t	4A / 10 ms and lower										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Max. voltage drop a	at On	DC 0.3V AND LOWER	र									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Surge killer		Zener diode										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$Off \rightarrow On$	1 ms and shorter										
Current consumption 130mA (when every point is On) External power supply Voltage DC12/24V ± 10% (4 Vp-p and lower ripple voltage) Supply LED On with Input On External connection method 40 Pin Connector Suitable cable size 0.3 mri Weight 0.1 kg Circuit diagram B20 0 Circuit diagram B20 0 B19 1 A19 B16 4 A16 B17 3 A17 B16 4 A16 B13 7 A13 B12 8 A12 B13 7 A13 B12 8 A12 B11 9 A11 B11 9 A11 B11 9 A12 B11 9 A11 B12 8 A12 B11 9 A11 B11 9 A11 B11 9 B11	Response time	$On \rightarrow Off$	1 ms and shorter (Rate	ed load	, resistan	ce load)							
External power supply Voltage DC12/24V ± 10% (4 Vp-p and lower ripple voltage) Current 10mA and lower (if connected to DC24V) Operation display LED On with Input On External connection method 40 Pin Connector Suitable cable size 0.3 mrl Weight 0.1 kg Circuit diagram No Contact B19 B17 3 B18 2 B13 7 B14 6 B11 9 B11 9 B10 10 B10 10 B11 9 B11 9 B11 9 B11 9 B11 9 B11 9	Common method		32points / 1COM										
Supply Current 10mA and lower (if connected to DC24V) Operation display LED On with Input On External connection method 40 Pin Connector Suitable cable size 0.3 mm² Weight 0.1 kg No Contact No Contact B20 0 Circuit diagram No Circuit diagram B20 DC5V B19 Internal B17 B18 2 B15 5 B14 6 B13 7 A13 23 B14 6 B13 7 B14 6 B11 9 B11 9 B11 A09 B11 A08 B06 14 B06 14 B06 14 B07 13 B07 13 A07 B06 14 A08 B07 13 A07<	Current consumption	on	130mA (when every p	oint is (Dn)								
Supply Current 10mA and lower (if connected to DC24V) Operation display LED On with Input On External connection method 40 Pin Connector Suitable cable size 0.3 mm² Weight 0.1 kg No Contact No Contact B20 0 Circuit diagram No Circuit diagram B20 DC5V B19 Internal B17 B18 2 B15 5 B14 6 B13 7 A13 23 B14 6 B13 7 B14 6 B11 9 B11 9 B11 A09 B11 A08 B06 14 B06 14 B06 14 B07 13 B07 13 A07 B06 14 A08 B07 13 A07<	External power	Voltage											
External connection method 40 Pin Connector Suitable cable size 0.3 mm² Weight 0.1 kg Circuit diagram No Contact No Contact B19 1 A19 17 B18 2 A18 18 B17 3 A17 19 B16 4 A16 20 B15 5 A15 B15 B14 6 A14 22 B11 9 A11 25 B10 10 A10 26 0 0 A20 0 A13 B13 1 A13 23 B14 6 A14 22 B11 9 A11 25 B10 10 A10 26 0 A20 0 A20 0 A13 B13 B14 6 10 0 A10 26 B10 0 0 A20 0 A20 <		Current	-										
Suitable cable size 0.3 mm² Weight 0.1 kg Circuit diagram No Contact No Contact 0 A20 16 B19 1 A19 17 B18 2 A18 18 B17 3 A17 19 B16 4 A16 20 B15 5 A15 21 B14 6 A14 22 B13 7 A13 23 B12 8 A12 24 B13 7 A13 23 B14 6 A14 22 B13 7 A13 23 B12 8 A12 24 B13 9 11 A09 27 B08 12 A08 28 B07 13 A07 29 B06 14 A06 30 B03 NC	Operation display		LED On with Input On										
Weight 0.1 kg No Contact No Contact B20 0 A20 16 B19 1 A19 17 B18 2 A18 18 B17 3 A17 19 B16 4 A16 20 B15 5 A15 21 B14 6 A14 22 B11 9 A11 25 B06 14 A06 31 B05 15 A05 31 B04 NC A03 NC N05 15 A05 31 B04 NC A03 NC B05 15 A05 31 B02 COM	External connection	n method	40 Pin Connector										
Circuit diagram No Contact No	Suitable cable size	!	0.3 m ²										
Circuit diagram No Contact No	Weight		0.1 kg										
Internal B19 1 A19 17 B20 A30 Internal B17 3 A17 19 B17 0 0 A41 B15 5 A15 21 B16 4 A16 20 A16 A16 0 A17 0 A16 0 A17 0 A16 0 A14 0 A13 0 A13 0 A13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td< td=""><td></td><td>Circuit diagra</td><td>m</td><td></td><td>No</td><td>Contact</td><td>No</td><td>Contact</td><td></td><td></td><td></td></td<>		Circuit diagra	m		No	Contact	No	Contact					
DC5V B20 L B18 2 A18 18 B19 0 0 A19 LED Internal B16 4 A16 20 B16 0 0 A16 B15 5 A15 21 B16 0 0 A16 B15 5 A15 21 B16 0 0 A16 B15 5 A13 23 B13 0 0 A16 B11 7 A13 23 B13 0 0 A12 B11 9 A11 25 B10 10 A10 26 A12 B11 9 A11 25 B13 0 0 A12 B10 10 A10 26 B09 0 0 A12 B10 10 A10 26 B06 0<					B20	0	A20	16		\square	,		
DCSV B20 L B18 2 A18 18 B19 A18 B17 3 A17 19 B18 B17 B16 4 A16 20 A16 B15 5 A15 21 B16 B15 S A15 A16 B14 6 A14 22 B14 B13 7 A13 23 B14 0 0 A16 B12 8 A12 24 B13 0 0 A14 B11 9 A11 25 B14 B13 0 0 A14 B11 9 A11 25 B14 B13 0 0 A14 B10 10 A10 26 B09 B06 B07 B06 B06 A00													
LED B20 L B17 S A17 13 Internal Circuit B15 S A15 21 B16 A A16 A16 B13 7 A13 23 B14 6 A14 22 B15 B16 A14 A14 B13 7 A13 23 B14 B15 B14 B17 0 0 A14 B12 8 A12 24 B13 0 0 A13 B11 9 A11 25 B10 0 0 0 A11 B10 10 A10 26 B09 B11 A09 27 B08 B07 0 0 A04 B05 15 A05 31 B04 NC A04 A04 0 A04 B05 15 A05 31 B03 NC A03 NC 0 A04 B03 NC A02 0V A04 A04 A04 A04													
Internal Internal <td< td=""><td></td><td>_</td><td>B20</td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		_	B20	_									
Internal Internal <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>A16</td></td<>											A16		
Internal Image: Second sec		── ──®─┤; → ?							B15		A15		
circuit Image: Circu	Internal	'¬								0 0			
A05 L COM B11 9 A11 25 B10 10 A10 26 B09 11 A09 27 B08 12 A08 28 B07 13 A07 29 B06 14 A06 30 B05 15 A05 31 B03 NC A03 A02 B03 NC A03 NC B02 COM A02 0	circuit	$\left[+ \mathbf{L} \right] $								1 .			
A05 B10 10 A10 26 B10 0 <td< td=""><td></td><td>_ /</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>A11</td></td<>		_ /									A11		
COM B09 11 A09 27 B08 B08 B08 12 A08 A08 DC12/24V A02, A01 B06 14 A06 30 B06 0 A06 B05 15 A05 31 B03 0 0 A03 *COM : B02, B01 *COM : B02, B01 B03 NC A03 NC B01 0 A03			A05										
COM B08 12 A08 28 B07 A07 DC12/24V A02, A01 B06 14 A06 30 B05 B05 B06 A04 A05 B05 15 A05 31 B03 B02 B03 NC A03 A02 A01				-						0 0			
DC12/24V B07 13 A07 29 B06 0 0 A06 A02, A01 B06 14 A06 30 B04 B05 B04 B03 B04 B03 B04 B03 B02 B01 B02 COM A02 A01 B01 A01 A02 A01 A03 A04 A03 A03 A04 A04 <td></td> <td></td> <td>СОМ</td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			СОМ	_									
A02, A01 B06 14 A06 30 B04 B04 B04 B04 B04 B03 B04 B03 B04 B03 B04 B03 B02 B01 B01 B01 B02 COM A02 A01 A03 A04 A04 <t< td=""><td></td><td></td><td>DC12/24V</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			DC12/24V										
* COM : B02, B01 B03 NC A03 NC B02 COM A02 B04 NC A04 NC B02 COM A02 B04 NC B04 B03 B04 B03 B04 A04 B03 A02 B01 O O A04 B03 A02 B01 O O O O O O O O O O O O O O O O O O O													
* COM : B02, B01 B03 NC A03 NC B02 COM A02 0V		L	AU2, AU1							I 1			
* COM : B02, B01 B03 NC A03 NC B01 0 0 A01 B02 COM A02 0V													
B02 COM A02 OV			* COM : B02,	301						0 0			
										\checkmark			
					B01	COM	A01	0V					

٦

9.3.9 32 point transistor output module (source type)

	Module type	Transistor output module												
Spec.						XGQ-	TR8B							
Output point		64 poi	ints											
Insulation method		Photo	coupler	insulatio	۱									
Rated load voltage		DC 12	2/24V											
Operating load voltage	e range	DC 10).2 ~ 26.4	1V										
Max. load current		0.1A/	0.1A / 1point, 2A / 1COM											
Leakage current at Of	f	0.1m/	0.1mA and lower											
Max. inrush current		4A/1	0 ms and	lower										
Max. voltage drop at C	Dn	DC 0.3	3V and k	ower										
Surge killer		Zener	diode											
Response time	$Off \rightarrow On$	1 ms a	and shor	ter										
Response unie	$On \rightarrow Off$	1 ms a	and shor	ter (Rate	d load, re	esistance	load)							
Common method		32poir	nt/1COM	Ν										
Current consumption		230m	A (when	every po	int is On))								
Common method		32poir	nt/COM											
External power	Voltage	DC12/24V \pm 10% (4 Vp-p and lower ripple voltage)												
supply	Current	10mA	10mA and lower (if connected to DC24V)											
Operation display	LED On with Input On (32 point LED ON by switching)													
External connection m	External connection method				40 Pin Connector × 2									
Suitable cable size		0.3 ㎜	1											
Weight		0.15 k	g											
Circuit o	diagram	No	Contact	No	Contact	No	Contact	No	Contact					
		1B20	0	1A20	16	2B20	32	2A20	48					
⊖ DC5V		1B19	1	1A19	17	2B19	33	2A19	49		\bigcap	١		
	1B20	1B18 1B17	2 3	1A18 1A17	18 19	2B18 2B17	34 35	2A18 2A17	50 51	B20	00	A20		
LED (¥		1B17	4	1A16	20	2B17	36	2A16	52	B19 B18	0 0	A19 A18		
	⊒ [‡] ⊀ │	1B15	5	1A15	21	2B15	37	2A15	53	B17	0 0	A17		
	्द्र /	1B14	6	1A14	22	2B14	38	2A14	54	B16	00	A16		
circuit		1B13	7	1A13	23	2B13	39	2A13	55	B15		A15		
		1B12	8	1A12	24	2B12	40	2A12	56	B14 B13	0 0	A14 A13		
I L I A	2A05	1B11	9	1A11	25	2B11	41	2A11	57	B12	0 0	A13		
		1B10	10	1A10	26	2B10	42	2A10	58	B11	0 0	A11		
		1B09	11	1 A0 9	27	2B09	43	2A09	59	B10	00	A10		
	DC12/24V	1B08	12	1 A0 8	28	2B08	44	2A08	60	B09	0 0	A09		
		1B07	13	1 A07	29	2B07	45	2A07	61	B08 B07	0 0	A08 A07		
	1A02, 1A01 2A02, 2A01	1B06	14	1 A0 6	30	2B06	46	2A06	62	B06	0 0	A07 A06		
		1B05	15	1A05	31	2B05	47	2A05	63	B05	00	A05		
Switching		1B04	NC	1 A0 4	NC	2B04	NC	2A04	NC	B04	00	A04		
circui	*COM : 1802, 1801	1B03	NC	1A03	NC	2B03	NC	2A03	NC	B03 B02	0 0	A03 A02		
A: displaying		1B02	СОМ	1A02	ov	2B02	сом	2A02	٥V	B01	00	7 A01		
B: displaying	g 32~63	1B01		1A01		2B01		2A01						

9.3.10 64 point transistor output module (source type)

Γ

	Module type	Tra	ansistor output module				
Spec.			XGQ-TR1C				
Output point		8 points					
Insulation method	1	Photo coupler insulation					
Rated load voltag	e	DC 12/24V					
Operating load vo	oltage range	DC 10.2 ~ 26.4V					
Max. load current		2A/1 point					
Leakage current a	at Off	0.1mA and lower					
Max. inrush curre	nt	4A / 10 ms and lower					
Max. voltage drop	o at On	DC 0.3V and lower					
Surge killer		Zener diode					
Deense time	$Off \rightarrow On$	3 ms and shorter					
Response time	$On \rightarrow Off$	10 ms and shorter (Rated load, re	esistance load)				
Common method	1	1 point/ 1COM					
Current consump	tion	100mA (when every points On)					
External power	Voltage	DC12/24V \pm 10% (4 Vp-p and lowe	er ripple voltage)				
supply Current 10mA and lower (if connected to DC24V)							
Operation display LED On with output On							
External connecti	on method	18point Terminal strip connector					
Weight		0.11kg					
	Circui	t diagram	Terminal block Contact				
			TB1 P0 XCQ-TR1C				
			TB2 COM0				
			TB3 P1				
φ D0	C5V		TB4 COM1				
LED 文							
			$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
	R R	СОМ					
Interna	u	> DC12/24V	TB9 P4				
	<						
circuit		TB15	TB11 P5				
			TB11 P5 TB12 COM5 TB13 P6 TB14 COM6				
			TB13 P6				
		DC12/24V					
L							
			TB17 NC				
			TB18 NC				

٦

9.3.11 8 point transistor isolated output module

9.4 Digital I/O Module Specifications

Γ

9.4.1 32 point (DC input · transistor output) I/O combined module

Input16 pointsPhoto coupler insulationDC 24VApprox. 4 mADC20.4~28.8V(5% and lower ripple rate)AC560Vrms/3Cycle(altitude2000m)DC 19V and higher / 3mA and higherDC 11V and lower / 1.7mA and lowerApprox. 5.6 kQ1ms/3ms/5ms/10ms/20ms/70ms/100ms(set by CPU parameter)Initial value:3ms1ms/3ms/5ms/10ms/20ms/70ms/100ms(set by CPU parameter)Initial value:3ms16 point/ COMLED On with input On110mA (when ever point is on)	Output point Insulation me Rated load vi Operating loa Max. load cu Leakage curr Max. inrush o Surge killer Max. voltage Response time Common me Operation dis	ethod oltage ad voltage range rrent rent at Off current current chop at On Off \rightarrow On On \rightarrow Off ethod	Output 16 points Photo coupler insulation DC 12/24V DC 10.2 ~ 26.4V 0.1A / 1point, 1.6A / 1COM 0.1mA and lower 0.7A / 10 ms and lower Zener diode DC 0.2V and lower 1 ms and shorter 1 ms and shorter (Rated load, resistance load) 16 point/ 1COM LED On with output On
Photo coupler insulation DC 24V Approx. 4 mA DC20.4~28.8V (5% and lower ripple rate) AC560Vrms/3Cycle(altitude2000m) DC 19V and higher / 3mA and higher DC 11V and lower / 1.7mA and lower Approx. 5.6 kΩ 1ms/3ms/5ms/10ms/20ms/70ms/ 100ms(set by CPU parameter) Initial value:3ms 1ms/3ms/5ms/10ms/20ms/70ms/ 100ms(set by CPU parameter) Initial value:3ms 16 point/ COM LED On with input On 110mA (when ever point is on)	Insulation me Rated load ve Operating loa Max. load cu Leakage cur Max. inrush o Surge killer Max. voltage Response time	oltage ad voltage range rrrent rent at Off current drop at On $Off \rightarrow On$ $On \rightarrow Off$ ethod	Photo coupler insulation DC 12/24V DC 10.2 ~ 26.4V 0.1A / 1point, 1.6A / 1COM 0.1mA and lower 0.7A / 10 ms and lower Zener diode DC 0.2V and lower 1 ms and shorter 1 ms and shorter
DC 24V Approx. 4 mA DC20.4~28.8V (5% and lower ripple rate) AC560Vrms/3Cycle(altitude2000m) DC 19V and higher / 3mA and higher DC 11V and lower / 1.7mA and lower Approx. 5.6 kΩ 1ms/3ms/5ms/10ms/20ms/70ms/ 100ms(set by CPU parameter) Initial value:3ms 1ms/3ms/5ms/10ms/20ms/70ms/ 100ms(set by CPU parameter) Initial value:3ms 16 point/ COM LED On with input On 110mA (when ever point is on)	Rated load w Operating loa Max. load cu Leakage curr Max. inrush o Surge killer Max. voltage Response time	oltage ad voltage range rrrent rent at Off current drop at On $Off \rightarrow On$ $On \rightarrow Off$ ethod	DC 12/24V DC 10.2 ~ 26.4V 0.1A / 1point, 1.6A / 1COM 0.1mA and lower 0.7A / 10 ms and lower Zener diode DC 0.2V and lower 1 ms and shorter 1 ms and shorter (Rated load, resistance load) 16 point/ 1COM
Approx. 4 mADC20.4~28.8V(5% and lower ripple rate)AC560Vrms/3Cycle(altitude2000m)DC 19V and higher / 3mA and higherDC 11V and lower / 1.7mA and lowerApprox. 5.6 kΩ1ms/3ms/5ms/10ms/20ms/70ms/100ms(set by CPU parameter)Initial value:3ms1ms/3ms/5ms/10ms/20ms/70ms/100ms(set by CPU parameter)Initial value:3ms16 point/ COMLED On with input On110mA (when ever point is on)	Operating loa Max. load cu Leakage curr Max. inrush o Surge killer Max. voltage Response time	ad voltage range rrent rrent at Off current current cdrop at On Off \rightarrow On On \rightarrow Off ethod	DC 10.2 ~ 26.4V 0.1A / 1point, 1.6A / 1COM 0.1mA and lower 0.7A / 10 ms and lower Zener diode DC 0.2V and lower 1 ms and shorter 1 ms and shorter (Rated load, resistance load) 16 point/ 1COM
DC20.4~28.8V (5% and lower ripple rate) AC560Vrms/3Cycle(altitude2000m) DC 19V and higher / 3mA and higher DC 11V and lower / 1.7mA and lower Approx. 5.6 kΩ 1ms/3ms/5ms/10ms/20ms/70ms/ 100ms(set by CPU parameter) Initial value:3ms 1ms/3ms/5ms/10ms/20ms/70ms/ 100ms(set by CPU parameter) Initial value:3ms 16 point/ COM LED On with input On 110mA (when ever point is on)	Max. load cu Leakage curr Max. inrush o Surge killer Max. voltage Response time	rrent at Off current drop at On Off \rightarrow On On \rightarrow Off	 0.1A / 1point, 1.6A / 1COM 0.1mA and lower 0.7A / 10 ms and lower Zener diode DC 0.2V and lower 1 ms and shorter 1 ms and shorter 1 ms and shorter (Rated load, resistance load) 16 point/ 1COM
(5% and lower ripple rate) AC560Vrms/3Cycle(altitude2000m) DC 19V and higher / 3mA and higher DC 11V and lower / 1.7mA and lower Approx. 5.6 kΩ 1ms/3ms/5ms/10ms/20ms/70ms/ 100ms(set by CPU parameter) Initial value:3ms 1ms/3ms/5ms/10ms/20ms/70ms/ 100ms(set by CPU parameter) Initial value:3ms 16 point/ COM LED On with input On 110mA (when ever point is on)	Leakage curr Max. inrush o Surge killer Max. voltage Response time	rent at Off current drop at On Off \rightarrow On On \rightarrow Off ethod	 0.1mA and lower 0.7A / 10 ms and lower Zener diode DC 0.2V and lower 1 ms and shorter 1 ms and shorter (Rated load, resistance load) 16 point/ 1COM
AC560Vrms/3Cycle(altitude2000m) DC 19V and higher / 3mA and higher DC 11V and lower / 1.7mA and lower Approx. 5.6 kΩ 1ms/3ms/5ms/10ms/20ms/70ms/ 100ms(set by CPU parameter) Initial value:3ms 1ms/3ms/5ms/10ms/20ms/70ms/ 100ms(set by CPU parameter) Initial value:3ms 16 point/ COM LED On with input On 110mA (when ever point is on)	Max. inrush o Surge killer Max. voltage Response time Common me	current drop at On Off \rightarrow On On \rightarrow Off ethod	0.7A / 10 ms and lower Zener diode DC 0.2V and lower 1 ms and shorter 1 ms and shorter (Rated load, resistance load) 16 point/ 1COM
DC 11V and lower / 1.7mA and lower Approx. 5.6 kΩ 1ms/3ms/5ms/10ms/20ms/70ms/ 100ms(set by CPU parameter) Initial value:3ms 1ms/3ms/5ms/10ms/20ms/70ms/ 100ms(set by CPU parameter) Initial value:3ms 16 point/ COM LED On with input On 110mA (when ever point is on)	Surge killer Max. voltage Response time Common me	drop at On Off \rightarrow On On \rightarrow Off ethod	Zener diode DC 0.2V and lower 1 ms and shorter 1 ms and shorter (Rated load, resistance load) 16 point/ 1COM
Approx. 5.6 kΩ 1ms/3ms/5ms/10ms/20ms/70ms/ 100ms(set by CPU parameter) Initial value:3ms 1ms/3ms/5ms/10ms/20ms/70ms/ 100ms(set by CPU parameter) Initial value:3ms 16 point/ COM LED On with input On 110mA (when ever point is on)	Max. voltage Response time Common me	$Off \rightarrow On$ $On \rightarrow Off$	DC 0.2V and lower 1 ms and shorter 1 ms and shorter (Rated load, resistance load) 16 point/ 1COM
1ms/3ms/5ms/10ms/20ms/70ms/100ms(set by CPU parameter)Initial value:3ms1ms/3ms/5ms/10ms/20ms/70ms/100ms(set by CPU parameter)Initial value:3ms16 point/ COMLED On with input On110mA (when ever point is on)	Response time Common me	$Off \rightarrow On$ $On \rightarrow Off$	1 ms and shorter 1 ms and shorter (Rated load, resistance load) 16 point/ 1COM
1ms/3ms/5ms/10ms/20ms/70ms/100ms(set by CPU parameter)Initial value:3ms1ms/3ms/5ms/10ms/20ms/70ms/100ms(set by CPU parameter)Initial value:3ms16 point/ COMLED On with input On110mA (when ever point is on)	Response time Common me	$Off \rightarrow On$ $On \rightarrow Off$	1 ms and shorter (Rated load, resistance load) 16 point/ 1COM
100ms(set by CPU parameter) Initial value:3ms 16 point/ COM LED On with input On 110mA (when ever point is on)	Common me	ethod	(Rated load, resistance load) 16 point/ 1COM
LED On with input On 110mA (when ever point is on)			
110mA (when ever point is on)	Operation dis	splay	LED On with output On
· · · ·			
40 Pin Connector × 1			
0.1 kg			
Photocoupler R C R C C C C C C C C C C C C C	B20 B19 B18 B17 B16 B15 B14 B13 B12 B11 B10 B09 B08 B07 B06 B05 B04 B03 B02	0 A20 1 A19 2 A18 3 A17 4 A16 5 A15 6 A14 7 A13 8 A12 9 A11 10 A10 11 A09 12 A08 13 A07 14 A06 15 A05 NC A04 NC A03	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
(D.1 kg	D.1 kg	D.1 kg External Photocoupler LED LED LED LED LED LED LED LED

9.5 Event Input Module

9.5.1 Event Input Module (Source/Sink type)

Specification			XGF-S	OEA		
Input point	32 point					
Insulation method	Photo coupler insulation					
Memory size	Records 1Mbit event information (3	00 ever	nt informati	ion per 2	XGF-SOE	A module)
Precision	1 ms (±2ms : error between modu	ules)				
Rated input voltage	DC24V					
Rated input current	About 4mA					
Used voltage range	DC20.4 ~ 28.8V (within ripple rate 5	5%)				
On voltage/On current	DC19V or above /3 mA or ab	ove				
Off voltage/ Off current	DC11V or less / 1.7 mA or less					
Input resistance	About 5.6 kΩ					
Response Off → On	H/W delay (10 ^{µs} : Normal) + input fi	lter time	e (user sett	ing: 0~1	00ms) + 0	CPU scan time delay (50µs)
time $On \rightarrow Off$	H/W delay (84 μ s: Normal) + input fi		-	-		
Working voltage	AC560V rms/3 Cycle (Altitude 2000		-	-		
Insulation resistance	Insulation resistance 10 MΩ or abov	e (DC5	00V)			
COMM method	32 point / COM					
Current consumption (A)	0.7(MAX)					
Operation indicator						
External connection						
method	40 pin connector					
Size	27x98x90					
Weight	0.2 kg					
Circu	it configuration	No	Contact	No	Contact	
	⇒ DC5V →	B20	0	A20	16	
	Photo coupler	B19	1	A19	17	B20 0 0 A20
		B18 B17	2	A18 A17	18 19	B19 0 0 A19 B18 0 0 A18
31		B16	4	A16	20	B17 0 0 A17
		B15	5	A15	21	B16 0 0 A16 B15 0 0 A15
	circuit	B14	6	A14	22	B13 0 0 A13 B14 0 0 A14
DC24V		B13	7	A13	23	B13 0 0 A13
* COM : B02, B01		B12	8	A12	24	B12 0 0 A12 B11 0 0 A11
90		B11	9	A11	25	B10 0 0 A10
80	+ + + + + + + + + + + + + + + + + + +	B10	10	A10	26	
70	DC28.8V	B09	11	A09	27	BOZ 0 0 AOZ
On rate 60		B08	12	A08	28	B06 0 0 A06
(%)		B07	13	A07	29	
50		B06	14	A06	30	B03 0 0 A03
40		B05	15	A05	31	
0 10 2	0 30 40 50 55	B04	RX+	A04	SG	B01 A01
	Ambient temp (°C)	B03 B02	RX- COM	A03 A02	SG COM	
,						

٦

9.6 Smart Link

ſ

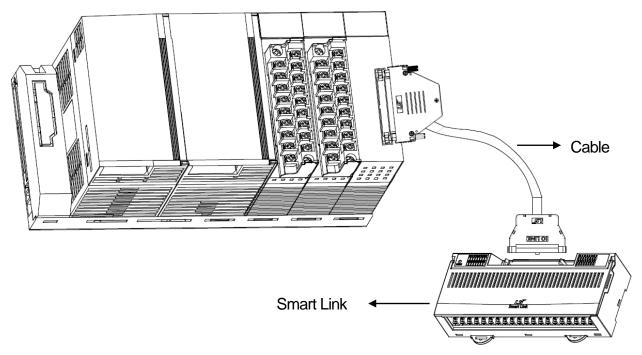
9.6.1 Modules accessible to Smart Link

From digital I/O modules used for XGT Series, the modules accessible to Smart Link are as follows. 32 point modules need a Connector(40 Pin x 1), 64 point modules need 2 connectors(40 Pin x 2)

Model	Specification	No. of Pins				
XGI-D24A/B	DC input 32 point module	40 Pin Connector × 1				
XGI-D28A/B	DC input 64 point module	40 Pin Connector × 2				
XGQ-TR4A	TR output 32 point module(sink type)	40 Pin Connector × 1				
XGQ-TR8A	TR output 64 point module(sink type)	40 Pin Connector × 2				
XGQ-TR4B	TR output 32 point module(source type)	40 Pin Connector × 1				
XGQ-TR8B	TR output 64 point module(source type)	40 Pin Connector × 2				
XGF-SOEA	Event input module	40 Pin Connector × 1				

9.6.2 Smart Link Components

The company prepares smart link products for the convenience of using our Connector type I/O modules. For further information, please refer to the data sheet contained in a smart link product. (Refer to 7.6.6 to confirm the differences between TG7-1H40CA and TG7-1H40S)


	Model	Cable	Length of Cable
		C40HF-05PB-1B	0.5m
		C40HF-10PB-1B	1m
	TG7-1H40S	C40HF-15PB-1B	1.5m
		C40HF-20PB-1B	2m
Terminal		C40HF-30PB-1B	3m
board		C40HF-05PB-1B	0.5m
	TO7 41 1400 A	C40HF-10PB-1B	1m
	TG7-1H40CA (Common 20Pin Added)	C40HF-15PB-1B	1.5m
		C40HF-20PB-1B	2m
		C40HF-30PB-1B	3m
		C40HF-05PB-1	0.5m
	DOOD NOTA 40D	C40HF-10PB-1	1m
	R32C-NS5A-40P (Sink type)	C40HF-15PB-1	1.5m
Relay		C40HF-20PB-1	2m
board		C40HF-30PB-1	3m
		C40HF-05PB-XGP1	0.5m
	R32C-PS5A-40P (Source type)	C40HF-10PB-XGP1	1m
		C40HF-20PB-XGP1	2m

9.6.3 Smart Link Mapping Table

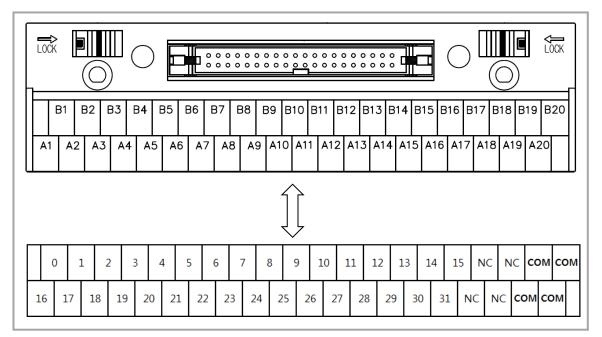
	1 : Module using 1ea Cable 2 : Module using 2ea Cable												
				XGT PLC (Digital I/O Module)									
	LS Smart Lir	Length (m)	XGQ-TR4A	XGQ-TR4B	XGQ-TR8A	XGQ-TR8B	XGI-D24A	XGI-D24B	XGI-D28A	XGI-D28B	XGI-SOEA		
	Cable	Description	Sets	1	1	2	2	1	1	2	2	1	
	C40HF-05PB-1B	PLC,CABLE ASS'Y,40p-40p,0.5m	0.5	1	1	2	2	1	1	2	2	1	
10S	C40HF-10PB-1B	PLC,CABLE ASS'Y,40p-40p,1m	1.0	1	1	2	2	1	1	2	2	1	
TG7-1H40S TG7-1H40CA	C40HF-15PB-1B	PLC,CABLE ASS'Y,40p-40p,1.5m	1.5	1	1	2	2	1	1	2	2	9	
ТG7	C40HF-20PB-1B	PLC,CABLE ASS'Y,40p-40p,2m	2.0	1	1	2	2	1	1	2	2	1	
	C40HF-30PB-1B	PLC,CABLE ASS'Y,40p-40p,3m	3.0	1	1	2	2	1	1	2	2	1	
_	C40HF-05PB-1	PLC,CABLE ASS'Y,40p-40p,0.5m	0.5	1		2							
A-40F	C40HF-10PB-1	PLC,CABLE ASS'Y,40p-40p,1m	1.0	1		2							
SINK)	C40HF-15PB-1	PLC,CABLE ASS'Y,40p-40p,1.5m	1.5	1		2							
R32C-NS5A-40P (SINK)	C40HF-20PB-1	PLC,CABLE ASS'Y,40p-40p,2m	2.0	1		2							
<u>~</u>	C40HF-30PB-1	PLC,CABLE ASS'Y,40p-40p,3m	3.0	1		2							
_	C40HF-05PB-XGP1	PLC,CABLE ASS'Y,40p-40p,0.5m	0.5		1		2						
A-40F e)	C40HF-10PB-XGP1	PLC,CABLE ASS'Y,40p-40p,1m	1.0		1		2						
C-PS5A- (Source)	C40HF-15PB-XGP1	PLC,CABLE ASS'Y,40p-40p,1.5m	1.5										
R32C-PS5A-40P (Source)	C40HF-20PB-XGP1	PLC,CABLE ASS'Y,40p-40p,2m	2.0		1		2						
~	C40HF-30PB-XGP1	PLC,CABLE ASS'Y,40p-40p,3m	3.0										

1

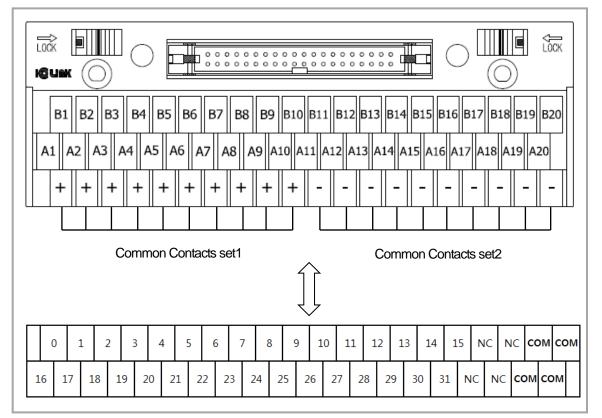
9.6.4 Smart Link Connection

9.6.5 Smart Link Connection Diagram

(1) XGI-D24A/B


Γ

1) Applicable Smart Link


	Model	Cable	Length of Cable
		C40HF-05PB-1B	0.5m
		C40HF-10PB-1B	1m
	TG7-1H40S	C40HF-15PB-1B	1.5m
		C40HF-20PB-1B	2m
Terminal		C40HF-30PB-1B	3m
board		C40HF-05PB-1B	0.5m
	T07 41400A	C40HF-10PB-1B	1m
	TG7-1H40CA (Common 20Pin Added)	C40HF-15PB-1B	1.5m
	(Common Zor III Added)	C40HF-20PB-1B	2m
		C40HF-30PB-1B	3m

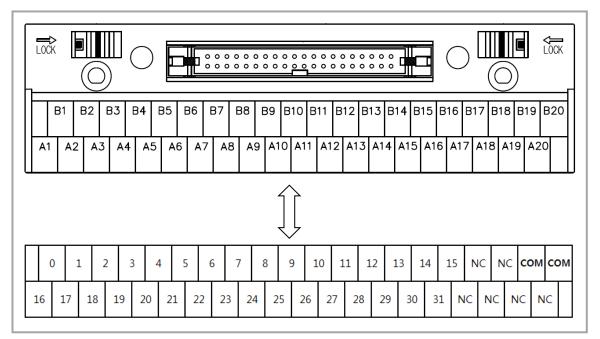
2) Connection Diagram (XGI-D24A/B)

(a) TG7-1H40S

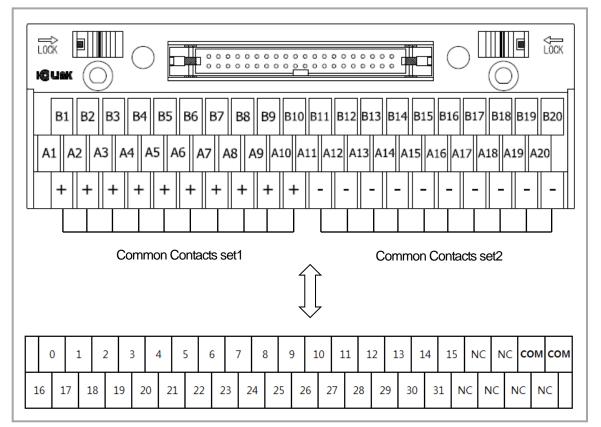
(b) TG7-1H40CA

٦

(2) XGI-D28A/B


Γ

1) Applicable Smart Link


	Model	Cable	Length of Cable
		C40HF-05PB-1B	0.5m
		C40HF-10PB-1B	1m
	TG7-1H40S	C40HF-15PB-1B	1.5m
		C40HF-20PB-1B	2m
Terminal		C40HF-30PB-1B	3m
board		C40HF-05PB-1B	0.5m
		C40HF-10PB-1B	1m
	TG7-1H40CA (Common 20Pin Added)	C40HF-15PB-1B	1.5m
	(Common Zor III Added)	C40HF-20PB-1B	2m
		C40HF-30PB-1B	3m

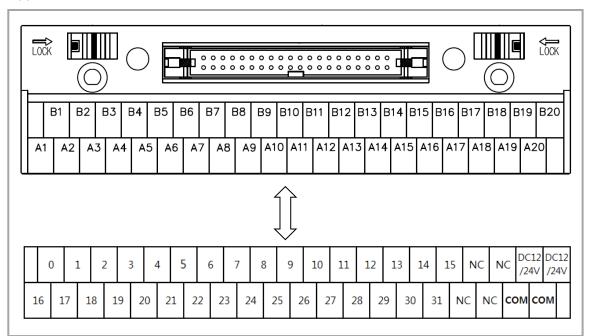
2) Connection Diagram (XGI-D28A/B)

(a) TG7-1H40S

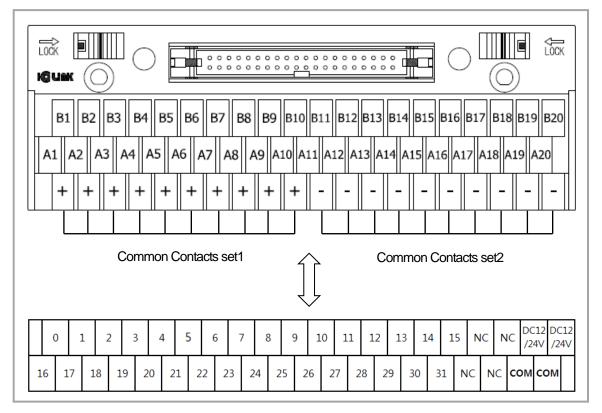
(b) TG7-1H40CA

٦

(3) XGQ-TR4A/8A


Γ

1) Applicable Smart Link


	Model	Cable	Length of Cable					
		C40HF-05PB-1B						
		C40HF-10PB-1B	1m					
	TG7-1H40S	C40HF-15PB-1B	1.5m					
		C40HF-20PB-1B	2m					
Terminal		C40HF-30PB-1B	3m					
board		C40HF-05PB-1B						
	T07 (11/00)	C40HF-10PB-1B	1m					
	TG7-1H40CA (Common 20Pin Added)	C40HF-15PB-1B	1.5m					
		C40HF-20PB-1B	2m					
		C40HF-30PB-1B	3m					
		C40HF-05PB-1	0.5m					
L		C40HF-10PB-1	1m					
Relay board	R32C-NS5A-40P (Sink type)	C40HF-15PB-1	1.5m					
Julia		C40HF-20PB-1	2m					
		C40HF-30PB-1	3m					

2) Connection Diagram (XGQ-TR4A/8A)

(a) TG7-1H40S

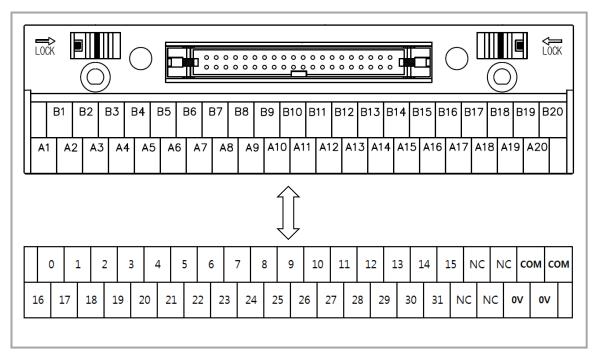
(b) TG7-1H40CA

1

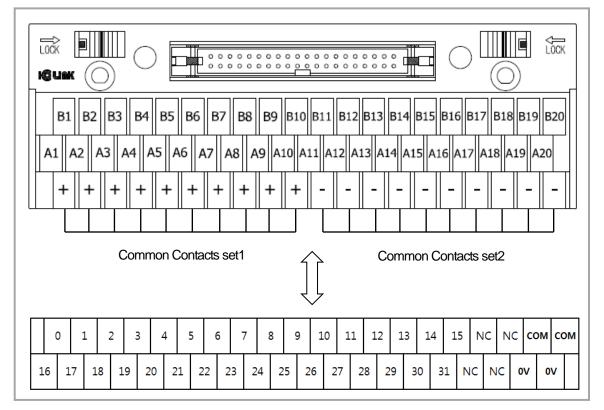
(c) R32C-NS5A-40P

POWER	00 01 02 08 09 0A							000	000			000	000						3 14 15 1 3 1C 1D 1		
	+ + 24V 24	⊢ CO 4V R1~			3 0. R4 R						E CO 15 R17^		.						_	E 31	
	 24G	 24G	00 R1	02 r3	04 r5	06 r7	COM2 R9~R16	00	0B R12	OD R14	OF R16	10 R17	12 _{R19}	14 R21	16 R23	COM4 R25~R32	19 ^{R26}	1B _{R28}	1D R30	1F r32	0
	$\widehat{\downarrow}$																				
DC12 [/24V ,	/24V CC	elay DM1 _{0~7}	1	3	5	7	8	10) 1	2 1	4 co	elay DM3 5~23	17	19	21	23	24	26	5 2	8 3	30
CON	м сом	0	2	4	4	6 со	elay DM2 3~15	9	11	13	15	16	18	20) 2	2 cc	elay 0M4 ⊷31	25	27	29	31

(4) XGQ-TR4B/8B


Γ

1) Applicable Smart Link


	Model	Cable	Length of Cable				
		C40HF-05PB-1B	0.5m				
		C40HF-10PB-1B	1m				
	TG7-1H40S	C40HF-15PB-1B	1.5m				
		C40HF-20PB-1B	2m				
Terminal		C40HF-30PB-1B	3m				
board		C40HF-05PB-1B					
	T07 (11/00)	C40HF-10PB-1B	1m				
	TG7-1H40CA (Common 20Pin Added)	1.5m					
		C40HF-20PB-1B	2m				
		C40HF-30PB-1B	3m				
		C40HF-05PB-XGP1	0.5m				
Datas		C40HF-10PB-XGP1	1m				
Relay board	R32C-PS5A-40P (Source type)	C40HF-20PB-XGP1	2m				
Joard		-	-				
		-	-				

2) Connection Diagram (XGQ-TR4B/8B)

(a) TG7-1H40S

(b) TG7-1H40CA

٦

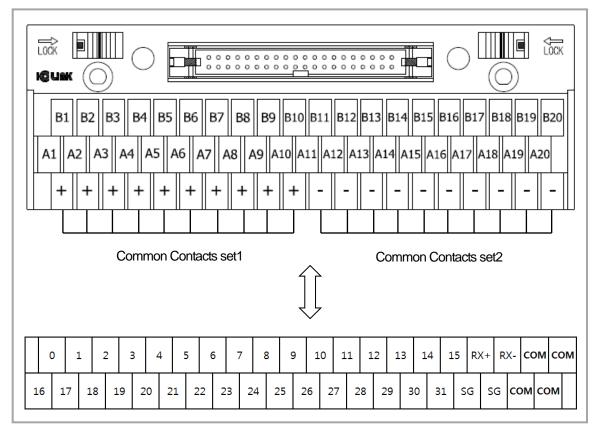
(c) R32C-PS5A-40P

POWER								
	COM1 O1 O3 O5 O7 O8 OA OC OE COM3 11 13 15 17 18 1A 1C 1E 24G 24G R1~R8 R2 R4 R6 R8 R9 R11 R13 R15 R17~R24 R18 R20 R22 R24 R25 R27 R29 R31							
	+ + + 00 02 04 06 COM2 09 0B 0D 0F 10 12 14 16 COM4 19 1B 1D 1F 24V 24V R1 R3 R5 R7 R9~R16 R10 R12 R14 R16 R17 R19 R21 R23 R26 R28 R30 R32 III							
D	$\begin{array}{c c c c c c c c c c c c c c c c c c c $							

(5) XGF-SOEA

Γ

1) Applicable Smart Link


	Model	Cable	Length of Cable
		C40HF-05PB-1B	0.5m
		C40HF-10PB-1B	1m
	TG7-1H40S	C40HF-15PB-1B	1.5m
		C40HF-20PB-1B	2m
Terminal		C40HF-30PB-1B	3m
board	TG7-1H40CA (Common 20Pin Added)	C40HF-05PB-1B	0.5m
		C40HF-10PB-1B	1m
		C40HF-15PB-1B	1.5m
		C40HF-20PB-1B	2m
		C40HF-30PB-1B	3m

2) Connection Diagram (XGF-SOEA)

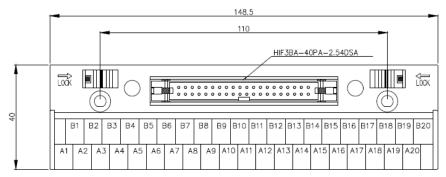
(a) TG7-1H40S

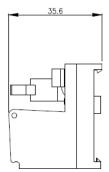
	LOCK	X I		\square	С				0 0 0 0 0 0		000		00		000	00			С			ĴСК
	A1	B1	B2	В3 3 А	В4 4 А	Ļ	5 B A6	6 E	37 E A8		B9 [310) A1		B12 2 A1						17 E A18	319 E A20	
Ц												<u> </u> 〜										
_	1						1				4	<u> </u>										
	0			2	3	4	5			7	8	9	10	11	12			Γ^{\perp}	$^{\perp}$			сом
	16	17	18	19	2		21	22	23	24	25	2	6 2	27 2	28	29	30	31	SG	i S	омсо	M

(b) TG7-1H40CA

٦

9.6.6 Smart Link Specifications & Dimensions

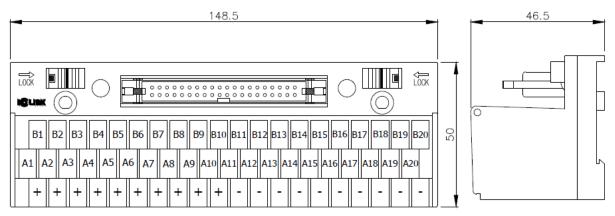

(1) TG7-1H40S


Γ

1) Specifications

Rated Voltage	AC, DC 125V
Rated Current	1A
Withstanding Voltage	600V 1min
Insulation resistance	100MΩ (DC 500V)
Applicable Wire	1.25 mm [*] /MAX
T/B Screw	M3 X 10L
Screw Torque	1.2N • m(12Kgf • cm)
Case	Modified PPO(Noryl)(UL 94V-0)

2) Dimensions(mm)



(2) TG7-1H40CA

1) Specifications

Rated Voltag	je	125V AC / 24V DC			
Rated	Ю	1A			
Current	Common	10A (Total)			
Insulation res	sistance	100MΩ (DC 500V)			
Withstanding	y Voltage	AC500V 1min			
Applicable W	/ire	AWG22-16 (MAX / 1.5 mm)			
Contact Scre	W	M3 X 10L			
Screw Torqu	e	1.2N • m(12Kgf • cm)			
Ambient Ter	nperature	-10°C ~ +50°C (Non-condensing)			
Terminal Blo	ck & Cover	Modified PPO			
Protective Co	over	Polycarbonate			
PCB		Epoxy 1.6t			

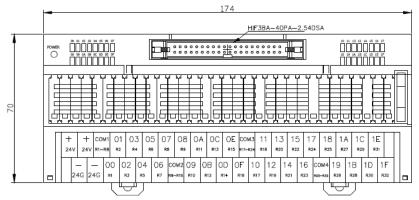
2) Dimensions(mm)

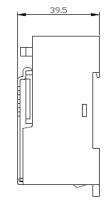
1

(3) R32C-N(P)S5A-40P

1) Specifications

Γ


(a) Relay Board


Case	Modified PPO			
Protective Cover	Polycarbonate			
PCB	Epoxy 1.6t / 2oz			
Applicable Wire	AWG22-16 (MAX / 1.5 mm)			
T/B Screw	M3 X 8L			
Screw Torque	1.2N • m(12Kgf • cm)			
Ambient Temperature	-10 $^\circ C$ ~ +50 $^\circ C$ (Non-condensing)			

(b) Relay

	Specification	PA1a-24V
	Arrangement	1a
	Nominal switching capacity	5A 250V AC / 5A 30V DC
Contact	Max. switching current	5A
	Max. switching voltage	250V AC / 110V DC
	Rated Voltage	24V DC
	Pick-up voltage	16.8V
Coil	Drop-out voltage	1.2V DC
	Coil resistance	3,200Ω
	Rated operation power	180mW
Surge volta	age between contact and coil	4,000V
	cdown voltage ontact and coil	2,000V rms

2) Dimensions(mm)

Chapter 10 Base and Expansion Cable

10.1 Specification

10.1.1 Basic base

Power module, CPU module, Ethernet communication module can be inserted into basic base. XGR-M02P/XGR-M06P uses 5.5A output power module.

Table	1 Specification of basic base		
Name	XGR-M02P	XGR-M06P	
The no. of IO module	2 modules	6 modules	
Dimension (mm)	238 X 98 X 19	346 X 98 X 19	
Distance of hole for panel attachment	218 X 75	326 X 75	
Specification of hole for panel attachment	φ 4.5 (M4 screw used)		
Specification of screw for PE connection	(+)PHM 3 X 6 washer(\[] 5)		
Weight (kg)	0.33	0.5	

10.1.2 Expansion Base

Power module, expansion driver module, IO module, special module, communication module can be inserted into expansion base.

Name	XGR-E12P	XGR-E08P	XGR-E12H
The no. of IO module	12 modules	8 modules	12 modules
Dimension (mm)	481 X 98 X 19	373 X 98 X 19	508 X 98 X 19
Distance of hole for panel attachment	461 X 75	353 X 75	488 X 75
Specification of hole for panel attachment		φ 4.5 (M4 screw used)	
Specification of screw for PE connection		(+)PHM 3 X 6 washer (ф 5)	
Weight (kg) (kg)	0.7	0.51	0.71

Table 2 Specification of expansion base

10.1.3 Sync. Cable

I

This cable is used for the data synchronization between CPU modules.

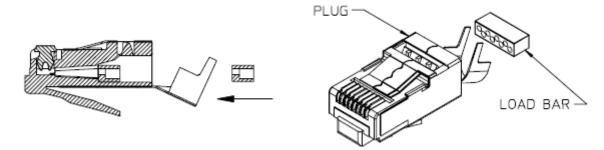
	Table 3 Specification of Sync. cable						
Name Item	XGC-F201	XGC-F501					
Length (m)	2.0	5.0					
Weight (g)	21g	47g					
Connector	LC type						
Optical fiber diameter	62.5/125um(62.5um fiber optic	62.5/125um(62.5um fiber optic core and 125um outer cladding)					
Wave length	13	1300nm					
Attenuation	1.3Db/1000m or less						
The quality of the material	Multi Mode Fiber (max. 2 Km) – s	Multi Mode Fiber (max. 2 Km) – separate order for other specifications					

10.1.4 Expansion Cable

This is the cable for connecting the basic and expansion bases. These are Ethernet cables. Electrical and optical cables are provided for use in accordance with the network type.

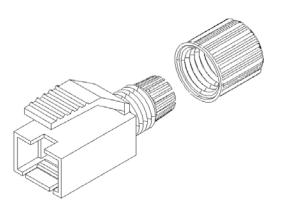
Especially, since the electrical cables transmit control data by tens of micro, external noise may affect system performance and control seriously.

Therefore, when using electrical cables in the XGR system, the FTP cable is the standard. If the system is subject to serious noise environment, use shielded twisted pair cable, such as STP/FSTP.


1) The length of the optical cables should not exceed 2Km.

2) The length of the electrical cables should not exceed 100m.

10.1.5 Connector for expansion cable (electrical)


The electrical expansion cables should be shielded twisted pair cables, such as FTP, STP, and SFTP, in order to meet the EMC specification and reduce external noise. To use such shield cables, the plugs and fix housing should be as follows.

(1) Connector Plug

Type: RJ45 PLUG /INDUSTRIAL CAT6(44915-0021)

(2) Plug Housing

Type (for FTP): RJ45 PLUG protection cover (WRJ45-0702) Type (for STP/SFTP): RJ45 PLUG protection cover (WRJ45-0701)

10.2 Parts and Names

10.2.1 Basic Base

Γ

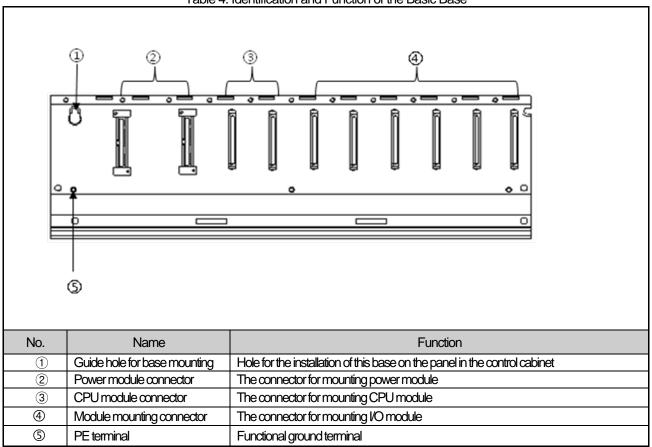


Table 4. Identification and Function of the Basic Base

10.2.2 Expansion Base

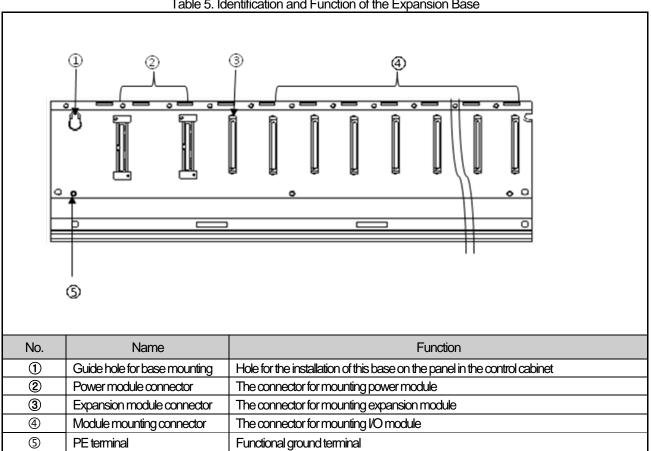


Table 5. Identification and Function of the Expansion Base

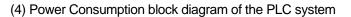
Γ

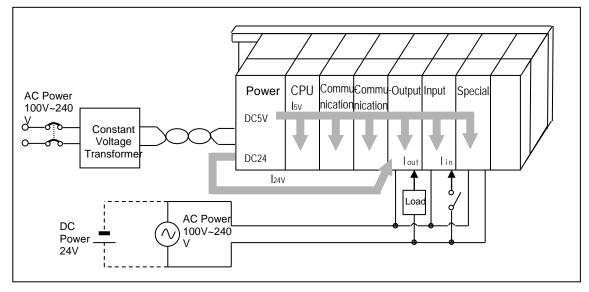
Chapter 11. Installation and Wiring

11.1 Installation

11.1.1 Installation environment

The system keeps a high reliability, irrespective of the installation environment. However, to guarantee the reliability and stability, make sure to keep the following cautions.


(1) Environmental conditions


- (a) Install in a control panel resisting to moisture and vibration.
- (b) Free of any continuous impact or vibration.
- (c) Not exposed to direct sunrays.
- (d) No condensation from sudden temperature fluctuation.
- (e) Ambient temperature range between $0 \sim 55^{\circ}$ C.
- (f) Relative humidity between 5 ~ 95%.
- (g) Free of any corrosive gas or flammable gas.
- (h) The falling of a thunderbolt and high voltage should not flow in

(2) Installation construction

- (a) When boring a screw hole or executing wiring construction, any wiring impurities should not be inserted to the PLC.
- (b) The system should be installed in a place easily accessible.
- (c) Do not install the system on a same panel of a high voltage device.
- (d) It should be 50mm and more away from wiring duct or proximate modules.
- (e) Grounding on a position where noise is lower than the specified level.
- (3) Heat protective design of control panel
 - (a) If installing the PLC in an air-tight control panel, it needs heat-protective(control) design considering the heat from the PLC as well as other devices. If ventilating by vent or fan, inflow of dust or gas may affect the performance of the PLC system.
 - (b) Install a filter or use a closed heat exchanger.

The following shows the calculation of PLC system's power consumption requiring heat protective design.

(5) Power consumption of each part

(a) Power consumption of power module

The power conversion efficiency of power module is about 70% and the other 30% is gone with heat; 3/7 of the output power is the pure power consumption. Therefore, the calculation is as follows.

• Wpw = 3/7 {(I₅∨ X 5) + (I₂₄∨ X 24)} (W)

Isv : power consumption of each module DC5V circuit(internal current consumption)

 $I_{24V:}$ the average current consumption of DC24V used for output module

(current consumption of simultaneous On point)

If DC24V is externally supplied or a power module without DC24V is used, it is not applicable.

(b) Sum of DC5V circuit current consumption

The DC5V output circuit power of the power module is the sum of power consumption used by each module.

• W5v = I5v X 5 (W)

(c) DC24V average power consumption(power consumption of simultaneous On point)

The DC24V output circuit's average power of the power module is the sum of power consumption used by each module.

• W24V = I24V X 24 (W)

- (d) Average power consumption by output voltage drop of the output module (power consumption of simultaneous On point)
 - Wout = Iout X Vdrop X output point X simultaneous On rate (W)
 - _ lout : output current(actually used current) (A)

- (e) Input average power consumption of input module(power consumption of simultaneous On point)
 - Win = Iin X E X input point X simultaneous On rate (W)
 - _____ lin: input current (root mean square value in case of AC) (A)
 - LE : input voltage (actually used voltage) (V)
- (f) Power consumption of special module power assembly

• Ws = I5V X 5 + I24V X 24 + I100V X 100 (W)

The sum of power consumption calculated by each block is the power consumption of the entire PLC

system.

• $W = WPW + W_{5V} + W_{24V} + W_{out} + W_{in} + W_{s}$ (W)

Calculate the heats according to the entire power consumption(W) and review the temperature increase within the control panel.

The calculation of temperature rise within the control panel is displayed as follows.

- $T = W / UA [^{\circ}C]$
 - W : power consumption of the entire PLC system (the above calculated value)
 - A : surface area of control panel [m²]
 - U : if equalizing the temperature of the control panel by using a fan and others - 6 If the air inside the panel is not ventilated - - - - - - - 4

Note

(1) If the control cabinet is not well ventilated, temperature gradient in the cabinet may be large. Care must be taken that the parts right above heat generating devices may become very hot.

(2) Coefficient U, which can be different according to quantity of material, is general example

Calculation example)

Redundant basic base: 4 communication modules equipped Expansion base 1: optical expansion drive, 6 Input modules, 6 output modules Expansion base 2:optical expansion drive, 6 analog input modules, 6 analog output modules.

Structure figure, calculation according to above steps

11.1.2 Cautions for handling

It describes the cautions for handling from unpacking to installation.

- Please do not drop it or apply excessive force on it.
- Please do not separate PCB from the case. It may cause a trouble.
- During wiring, a special attention should be paid so that impurities such as wiring remainder should not be inserted into the top of a module. If impurities are found, immediately remove them.
- (1) Cautions for handling I/O module

It describes the cautions for installing or handling I/O module.

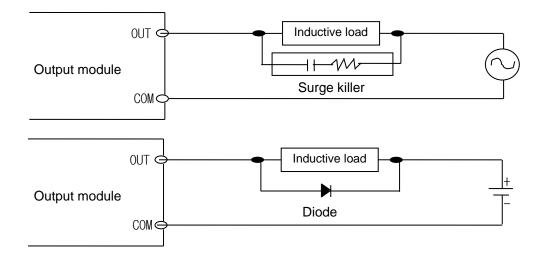
(a) Recheck the I/O module specifications.

The input module may be affected by input voltage while the output module may be subject to breakage, destruction or a fire if the voltage over the max. switching capacity is allowed.

(b) Available cable type

Cable should be selected in consideration of ambient temperature and allowable current; the min. size of cable should be AWG22(0.3mm²) and higher.

(c) Environment

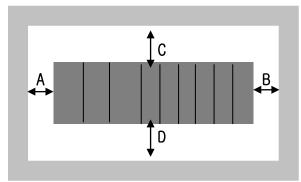

If I/O module wiring is close to heating sources or materials or the wiring is directly contacted with oils for a long time during wiring, it may cause short-circuit, destruction or malfunction.

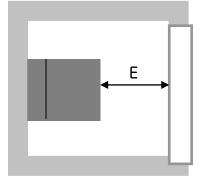
(d) Polarities

Please make sure to check the polarities of modules of which terminal block is polarized before allowing the power.

(e) Wiring

- When I/O wiring is executed with high voltage or power cable, it may cause inductive fault, probably leading to malfunction or trouble.
- No cable should not be arranged front of I/O operation display(LED)
- (I/O display may be hidden, hindering the interpretation)
- If an output module is connected to inductive load, please make sure to connect a surge killer or diode to load in parallel. Please connect the cathode side of a diode to (+) o f the power.


(f) Terminal strip


Please check the tightness of terminal strip and prevent any wiring impurities (remainder) from being inserted into the PLC when processing terminal strip wiring or screw hole making. It may cause malfunction or trouble.

- (g) Besides the above, it is prohibited to apply excessive impact on I/O module or separating PCB board from the case.
- (2) Cautions for installing the base

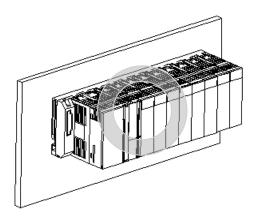
It describes the cautions when installing the PLC on the control panel and others.

(a) A proper distance between the top of a module and structure/parts should be secured to facilitate ventilation and module replacement.

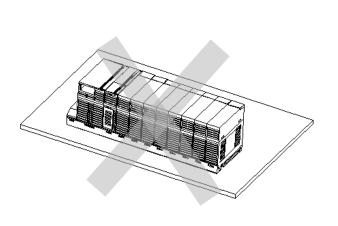
A, B: more than 5 cm

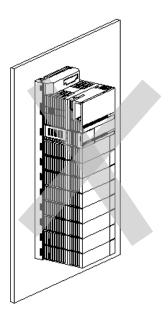
C, D: more than 5 cm for easy attachment/detachment

(more than 3cm with wiring duct. In case of duct height is more than 5cm, keep the distance more than 5cm.) In case using optical communication or maximum load of power module, keep the distance more than 15cm for ventilation.


- E: more than 10 cm
- In case of using optical cable, IO module of connector type, more than 8 cm distance necessary
- In case of Ethernet FTP cable, more than 10cm distance necessary

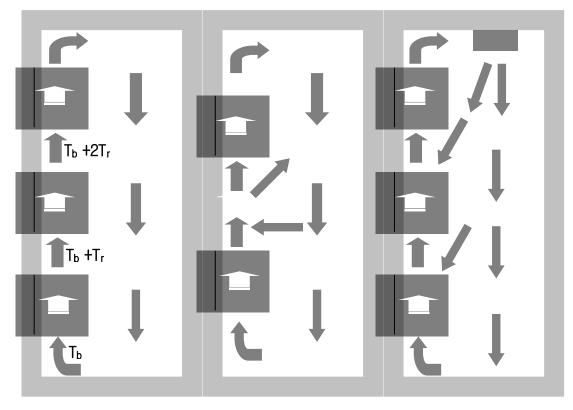
(b) Please do not install it vertically or horizontally for the ventilation purpose.


(c) Please use a different panel or secure a proper distance if there is vibration source from a large electronic contact or


no-fuse breaker

- (d) If necessary, please install a wiring duct. However, please keep the following cautions.
 - If installing on the top of PLC, maintain the height of a wiring duct 50mm more than for better ventilation. In addition, maintain the distance from the top of PLC so that the hook on the top of the base can be pressed.
 - If installing on the bottom of it, let optical or coaxial cable be connected and consider the minimum radius of the cable.
- (e) Please install the PLC along the well-ventilated direction as presented below for the heat prevention purpose.

(f) Please do not install it to the direction as presented below.



- 100mm more than 100mm more than 50mm more than a li In 50mm more than
- (g) To avoid any influence of radiating noise or heat, please install the PLC and other devices(relay, electronic contact) with a spacing secured as presented below.

Γ

(h) In a layered-installation of PLCs, the temperature of the base at the top may become very high due to the heat transferred from the lower layers. If the temperature in the control cabinet is high, install a ventilating fan, or provide sufficient distances between the bases.

[Closed installation]

[Installation with distance]

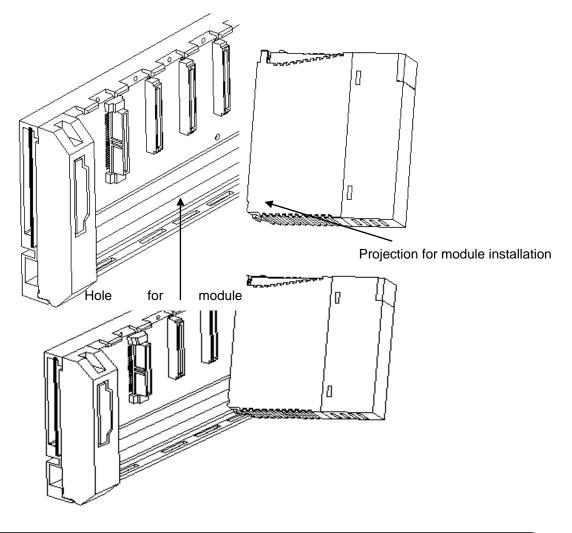
[Ventilating fan]

(1) In case of closed installation, the temperature $(T_b + T_r)$ around the modules right above the optical communication module and power module which generate large heat may be higher than that at other positions by 15°C.

(The temperature of the air near the modules should not exceed 55°C.)

- Optical communication module: XGR-CPU(optical) module, expansion drive (optical) module, inter-PLC communication (optical) module

(2) In order to dissipate the heat radiated from PLCs, heat conductivity between the enclosure wall and bases or base chassis should be considered in the design and installation.

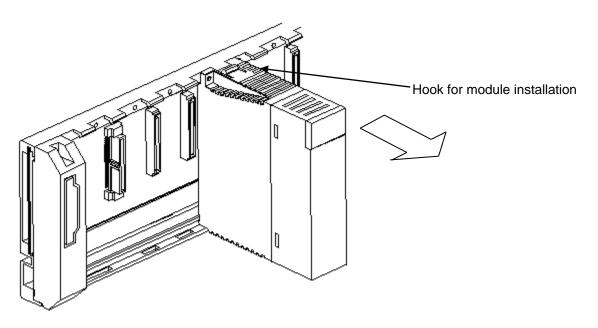

11.1.3 Attachment/Detachment of modules

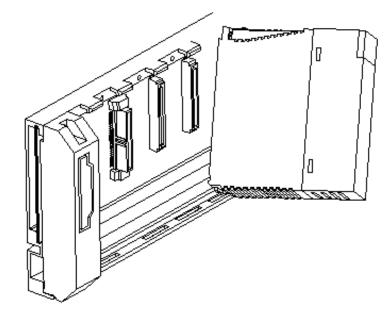
It describes how to attach or detach a module on the base.

(1) Attachment

Γ

- Please insert the fixation projection on the bottom of a module to the hole of module installation of the base.
- Please fix it on the base by pushing the top of a module and tight it by using the module fixation screw.
- Please try to pull the top of a module to check whether it is tightly fixed on it.





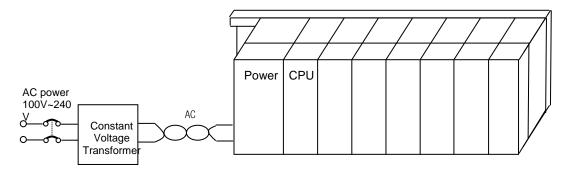
(1) A module should be installed by inserting the projection for module installation to the hole for module installation. If applying an excessive force, a module may be broken.

(2) Detachment

- Please unscrew the fixation screw on the top of a module.
- Please press the hook for module installation with a module held by both hands.
- Please pull the bottom of a module toward the top while pressing the hook.
- Lifting up the module, please detach the projection for module installation from the hole for module installation.

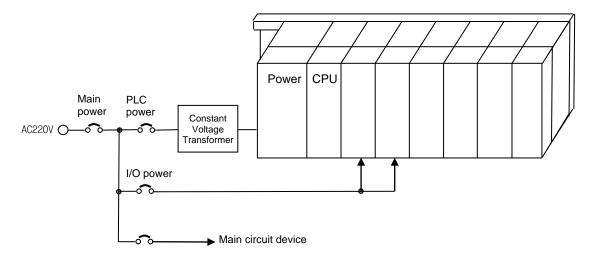
Oraution

(1) When detaching a module, please press the hook to detach it from the base and then, isolate the projection for module installation from the hole for module installation. At the moment, if trying to detach it forcibly, the hook or projection may be damaged.

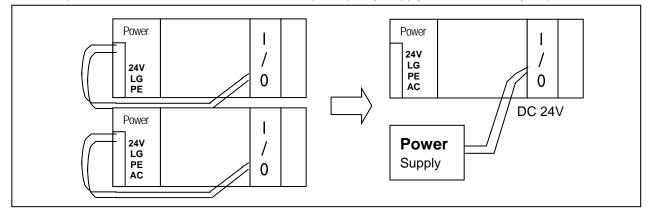

11.2 Wiring

Γ

It describes the important information about wiring when using the system.


11.2.1 Power wiring

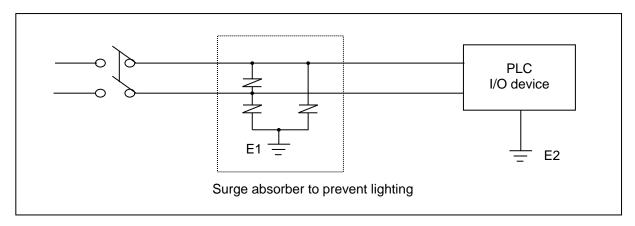
(1) Connect a constant voltage transformer when the power variance is larger than the specified range.

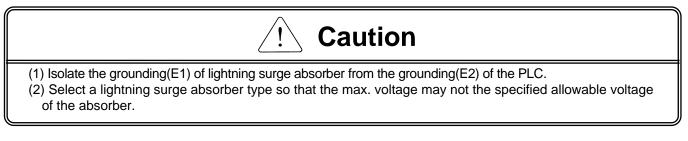

(2) Connect the power source of which inter-cable or cable-ground noise is small. (If a large one is connected, make sure to connect to an insulation transformer)

(3) Isolate the PLC power, I/O devices and power devices as follows.

(4) If using DC24V of the power module

Do not connect DC24V of several power modules in parallel. It may cause the destruction of a module.
If a power module can not meet the DC24V output capacity, supply DC24V externally as presented below.

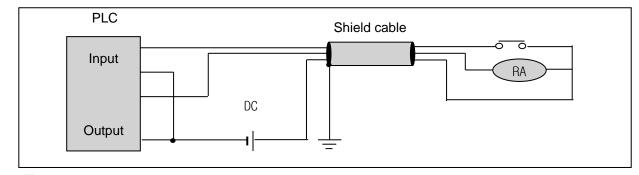



(5) AC110V/AC220V/DC24V cables should be compactly twisted and connected in the shortest distance.

(6) AC110V/AC220V cable should be as thick as possible(2mm²) to reduce voltage drop.

AC110V/ DC24V cables should not be installed close to main circuit cable(high voltage/high current) and I/O signal cable. They should be 100mm away from such cables.

(7) To prevent surge from lightning, use the lightning surge absorber as presented below.

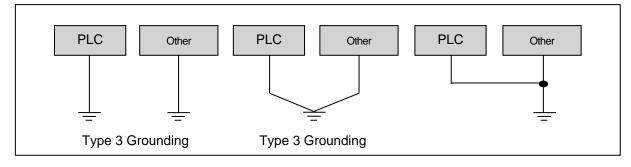

(8) When noise may be intruded inside it, use an insulated shielding transformer or noise filter.

(9) Wiring of each input power should be twisted as short as possible and the wiring of shielding transformer or noise filter should not be arranged via a duct.

11.2.2 I/O Device wiring

(1) The size of I/O device cable is limited to 0.3~2 mm² but it is recommended to select a size(0.3 mm²) to use conveniently.

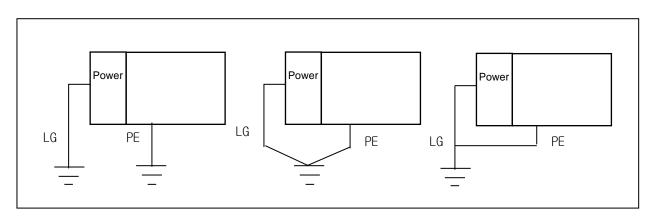
- (2) Please isolate input signal line from output signal line.
- (3) I/O signal lines should be wired 100mm and more away from high voltage/high current main circuit cable.
- (4) Batch shield cable should be used and the PLC side should be grounded unless the main circuit cable and power cable can not be isolated.



- (5) When applying pipe-wiring, make sure to firmly ground the piping.
- (6) The output line of DC24V should be isolated from AC110V cable or AC220V cable.

(7) For a long distance wiring over 200m, please refer to 12.4 Cases in Chapter 12 because it is expected that accident may occur due to leakage current due to inter-cable capacity.

11.2.3 Grounding wiring


- (1) The PLC contains a proper noise measure, so it can be used without any separate grounding if there is a large noise. However, if grounding is required, please refer to the followings.
- (2) For grounding, please make sure to use the exclusive grounding.For grounding construction, apply type 3 grounding(grounding resistance lower than 100 Ω)
- (3) If the exclusive grounding is not possible, use the common grounding as presented in B) of the figure below.

A) Exclusive grounding : best B) common grounding : good C) common grounding:

defective

- (4) Use the grounding cable more than 2 mm². To shorten the length of the grounding cable, place the grounding point as close to the PLC as possible.
- (5) Separately ground the LG of the power module and the FG of the base board.

A) Exclusive grounding : best B) common grounding : good C) common grounding: defective

(6) If any malfunction from grounding is detected, separate the PE of the base from the grounding.

11.2.4 Specifications of wiring cable

Types of external	Cable specification (mm ²)		
connection	Lower limit	Upper limit	
Digital input	0.18 (AWG24)	1.5 (AWG16)	
Digital output	0.18 (AWG24)	2.0 (AWG14)	
Analogue I/O	0.18 (AWG24)	1.5 (AWG16)	
Communication	0.18 (AWG24)	1.5 (AWG16)	
Main power	1.5 (AWG16)	2.5 (AWG12)	
Protective grounding	1.5 (AWG16)	2.5 (AWG12)	

٦

Г

Chapter 12 Maintenance

To maintain PLC in the best condition, please execute the following routine and periodic inspections.

12.1 Repairs and Maintenance

The I/O module mainly consists of semiconductor elements, so its life is almost semi permanent. However, such elements may be affected by the environment, so they should be periodically inspected and maintained. Please refer to the following checklist for the items to be checked once or twice every 6 months.

Checklist		Judgment basis	Actions
Power supply		Within the power variance range (less than –15% / +10%)	Adjust the power within the allowable voltage variance range.
I/O power		I/O specifications of each module	Adjust the power within the allowable voltage variance range.
	Temperature	0∼+55°C	A divertime temperature and by midity expeditions property
Environment	Humidity	5~95%RH	Adjust the temperature and humidity conditions properly.
Vibration		None	Use vibration-preventive rubber or other measures.
Shakes of modules		Should not have shake	Every module should be protected from shaking.
Loose terminal screw		No looseness	Tighten any loose screw.
Spare parts		Check whether the amount and conditions of spare parts are proper	Replenish insufficient parts and improve the storage condition.

12.2 Routine Inspection

The following items should be routinely inspected.

Checklist		Check point	Judgment basis	Actions
Attachment of	f the base	Check any loose screw	Screws should be firmly tightened.	Tightening
Attachment of I/O module		 Check the screws are firmly tightened Check any separation of module cover 	Should be firmly tightened.	Check screw
		Loosen screw	No looseness	Tightening
Attachment of terminal strip and expansion cable		Proximity with clamped terminal	Proper spacing	Calibration
		Connector of expansion cable	Connector should be tightened	Calibration
Power LED		Check whether it is LED ON	LED On (off is error)	
- Display LED -	RUN LED	Check whether it is LED ON in RUN state	LED On (off or blinking is error)	
	STOP LED	Check whether it is LED Off in RUN state	Blinking is error	Please refer to
	Input LED	Check whether LED On or Off	LED On with input ON and	chapter 14.2
			LED Off with input off	
	Output LED	Check whether LED On or Off	LED On with output ON and	
			LED Off with output off	

12.3 Periodic Inspection

Γ

Checklist		Check method	Judgment basis	Actions
	Temperature	Measure by	0∼55 °C	Adjusting according to the general spec.(the environment
Environment	Humidity	thermometer/hygrometer	5~95%RH	
	Contamination level	Measure corrosive gas	Free of corrosive gas	in panel)
PLC status	Looseness/shake	Try to move each module	Should be firmly attached	Tightening
PLC Status	Built-in dust/impurities	Visual inspection	No built-in dust/impurities	-
	Looseness	Tightening with a screwdriver	No loosened screws	Tightening
Connection status	Proximate of clamped terminal	Visual inspection	Proper spacing	Calibration
	Loosened connector	Visual inspection	No looseness	Tightening connector screws
Check power voltage		Check the voltage of input terminal by using a tester	AC100~240V:AC85~ 264V DC24V:DC19.2 ~ 28.8V	Change the power supplied
Battery		Check the battery replacement timing and voltage drop	 Check the total interruption time and warranty period No battery voltage drop display 	A battery should be replaced if it passes the warranty period despite of no display
Fuse		Visual inspection	• No fusing	Regularly replace it because element may be deteriorated by inrush current.

Please take a measure by checking the following items once or twice every 6 months.

Chapter. 13 EMC Compliance

13.1 Requirements Complying with EMC Specifications

EMC Directions describe "Do not emit strong electromagnetic wave to the outside: Emission" and "Do not have an influence of electromagnetic wave from the outside: Immunity", and the applicable products are requested to meet the directions. The chapter summarizes how to structure a system using XGT PLC to comply with the EMC directions. The description is the data summarized for the requirements and specifications of EMC regulation acquired by the company but it does not mean that every system manufactured according to the description meets the following specifications. The method and determination to comply with the EMC directions should be finally determined by the system manufacturer self.

13.1.1 EMC specifications

The EMC specifications affecting the PLC are as follows.

Specification	Test items	Test details	Standard value
	EN55011 Radiated noise * 2	Measure the wave emitted from a product.	30~230 Mtz QP:50 dB, μV/m * 1 230~1000 Mtz QP:57 dB, μV/m
EN50081-2	EN55011 conducted noise	Measure the noise that a product emits to the power line.	150~500 kHz QP : 79 dB Mean : 66 dB 500~230 MHz QP : 73 dB Mean : 60 dB
	EN61000-4-2 Electrostatic immunity EN61000-4-4 Fast transient burst noise	Immunity test allowing static electricity to the case of a device. Immunity test allowing a fast noise to power cable and signal cable.	4 ^{kV} Contact discharge Power line : 2 ^{kV} Digital I/O : 1 ^{kV} Analogue I/O, signal lines : 1 ^{kV}
EN61131-2	EN61000-4-3 Radiated field AM modulation	Immunity test injecting electric field to a product.	10Vm, 26~1000 Mtz 80% AM modulation@ 1 kHz
	EN61000-4-12 Damped oscillatory wave immunity	Immunity test allowing attenuation vibration wave to power cable.	Power line : 1 ^{kV} Digital I/O(24V and higher) : 1 ^{kV}

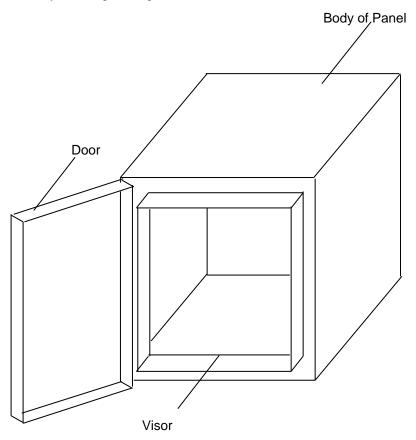
Table 13-1

* 1 : QP: Quasi Peak, Mean : average value

* 2 : PLC is a type of open device(installed on another device) and to be installed in a panel.

For any applicable tests, the system is tested with the system installed in a panel.

13.1.2 Panel


The PLC is a kind of open device(installed on another device) and it should be installed in a panel. It is because the installation may prevent a person from suffering from an accident due to electric shock as the person contacts with the product(XGT PLC) and the panel can attenuates the noise generating from the PLC. In case of XGT PLC, to restrict EMI emitted from a product, it should be installed in a metallic panel. The

specifications of the metallic panel are as follows.

(1) Panel

The panel for PLC should be installed and manufactured as follows.

- (a) The panel should be made of SPCC(Cold Rolled Mild Steel)
- (b) The plate should be 1.6mm and thicker
- (c) The power supplied to the panel should be protected against surge by using insulated transformer.
- (d) The panel should be structured so that electric wave is not leaked outside. For instance, make the door as a box as presented below. The main frame should be also designed to be covered the door in order to restrict any radiating noise generated from the PLC.

- (e) The inside plate of panel should have proper conductivity with a wide surface as possible by eliminating the plating of the bolt used to be mounted on the main frame in order to secure the electric contact with the frame.
- (2) Power cable and grounding cable

The grounding/power cable of PLC should be treated as follows.

- (a) The panel should be grounded with a thick wire() to secure a lower impedance even in high frequency.
- (b) LG(Line Ground) terminal and PE(Protective Earth) terminal functionally let the noise inside the PLC flow into the ground, so a wire of which impedance is low should be used.
- (c) Since the grounding cable itself may generate noise, thick and short wiring may prevent it serving as an antenna.

13.1.3 Cable

- (1) Expansion cables can be classified into optical and electrical cables according to the connector type.
 - (a) For the optical cables, use MMF(Multi Mode Fiber) 50/65um LC Type Cable.
 - Use indoor type, outdoor type, or conduit type according to the installation site.

Fig. MMF(LC Type) cable

(b) For the electrical cables, communication can be done with 100Mbit Twisted Pair cables, however, since the data transmission in expansion cables is in tens of micro unit, external noise may affect system performance and control seriously.

Therefore, electrical cables used in XGR systems should, basically, be shielded twisted pair cables such as FTP, STP, or FSTP.

Fig. FTP Cable

STP Cable

FTP Cable

Fig. STP Cable

(2) Fixing a cable in the panel

If the expansion cable of XGT series is to be installed on the metallic panel, the cable should be 1cm and more away from the panel, preventing the direct contact.

The metallic plate of panel may shield noise from electromagnetic wave while it a cable as a noise source is close to the place, it can serve as an antenna. Every fast signal cable as well as the expansion cable needs proper spacing from the panel

13.2 Requirements Complying with Low Voltage Direction

The low voltage direction requires a device that operates with AC50~1000V, DC 75 ~ 1500V to have proper safety. The followings summarize the cautions for installing and wiring PLC of the XGT series to comply with the low voltage directions. The description is the data based on the applicable requirements and specifications as far as we know but it does not mean that every system manufactured according to the description meets the following specifications. The method and determination to comply with the EMC directions should be finally determined by the system manufacturer self.

13.2.1 Specifications applicable to XGT series

XGT series follow the EN6100-1(safety of the device used in measurement/control lab). XGT series is developed in accordance with the above specifications, even for a module operating at the rated voltage higher than AC50V/DC75V.

13.2.2 Selection of XGT series PLC

(1) Power module

The power module of which rated input voltage is AC110/220V may have dangerous voltage(higher than 42.4V peak) inside it, so any CE mark compliance product is insulated between the primary and the secondary.

(2) I/O module

I

The I/O module of which rated voltage is AC110/220V may have dangerous voltage(higher than 42.4V peak) inside it, so any CE mark compliance product is insulated between the primary and the secondary. The I/O module lower than DC24V is not applicable to the low voltage directions.

(3) CPU Module, Base unit

The modules use DC5V, 3.3V circuits, so they are not applicable to the low voltage directions.

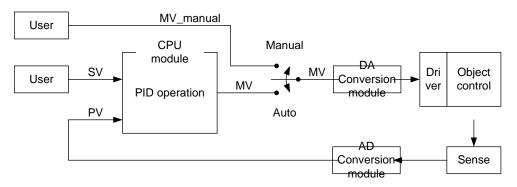
(4) Special module, Communication module

The modules use the rated voltage less than DC 24V, so they are not applicable to the low voltage directions.

Chapter 14 Built-in PID Function

This chapter describes XGR Series CPU built-in PID function.

14.1 Features


The features of PID function built-in XGR-CPU are as follows.

- (1) It can execute precise control operation.
- (2) It has a fast operation cycle up to 0.6ms.
- (3) XGR CPUH can operate totally 256 loops by using 32 loops in 8 blocks.
- (4) Symbol variable function facilitates setting and monitoring.
- (5) It supports forward/reverse operation process.
- (6) Strong dual anti windup prevents effective over/under shoot.
- (7) It may be operated by external device (HMI).
- (8) It protects the system by restricting the max. variance of PV.
- (9) It protects the drive by restricting the max. variance, max value and min value of MV.
- (10) Auto-tuning function is used for PID control.

(11) Cascade PID control is available.

14.2 PID Control

PID Control compares the value measured at detection (process value) to the pre-determined value, adjusts outputs (control signal) to eliminate, if any, an error between two values, making the current value to the target value, in order to maintain the state of an object to control be a pre-determined value (target value).

As presented in the above figure, PLC functions as a control in a whole control system while sensor and driver are used to detect an object to control and drive the system, respectively.

When a sensor detects the current state of an object to control and delivers it to a control, PLC executes an operation of output and delivers it to a driver. Meanwhile, a driver drives the object according to the output. Finally, a sensor detects the changed state and re-sends it to PLC, forming a closed loop.

A procedure circulating a control loop repeats at the unit of several seconds and hundreds of microseconds and the time is called control cycle.

14.3 PID Control Operation

14.3.1 Terms used

I

It describes the terms necessary to explain PID control operation.

: Set value to which an object to control should reach
: Sampling time (control cycle)
: Proportional constant
: Integral time constant
: Differential time constant
: Current state of an object to control, which is detected by a sensor
: Error of an object to control, which is expressed in (SV – PV)
: Control input or control's output
: Proportional component of MV
: Integral component of MV
: Differential component of MV

14.3.2 PID equation

PID Equation may be expressed from equation (14.3.1) through equation (14.3.5).

$$E = SV - PV \tag{14.3.1}$$

$$MV_p = K_p E \tag{14.3.2}$$

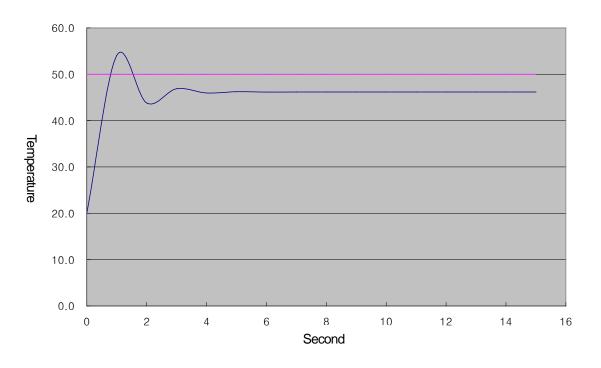
$$MV_i = \frac{K_p}{T_i} \int E \, dt \tag{14.3.3}$$

$$MV_d = K_p T_d \frac{dE}{dt}$$
(14.3.4)

$$MV = MV_p + MV_i + MV_d \tag{14.3.5}$$

Error is a mathematical expression indicating how far the current system is out of a user's desirable state. For instance, assuming that a user wishes to maintain water in an electric kettle at 50 $^{\circ}$ C and the temperature of water is 35 $^{\circ}$ C, SV and PV are 50 $^{\circ}$ C and 35 $^{\circ}$ C, respectively and **error E is 15, the difference between SV and PV**. The control executes PID operation according to the error.

Note that MV totally consists of each component of P, I and D, that is, MV_p, MV_i and MV_d, as presented in figure (14.3.5). namely, if subtracting D from PID control equation, it results in PI control; alike, if subtracting I and D, it results in P control.


14.3.3 P control

As seen in the equation (14.3.7), MV of P control consists of proportional operation, MV_p only. The term is applicable as a type multiplying proportional coefficient by error. A user should adjust the coefficient according to the system and as larger it is set, as more it is sensitive to error.

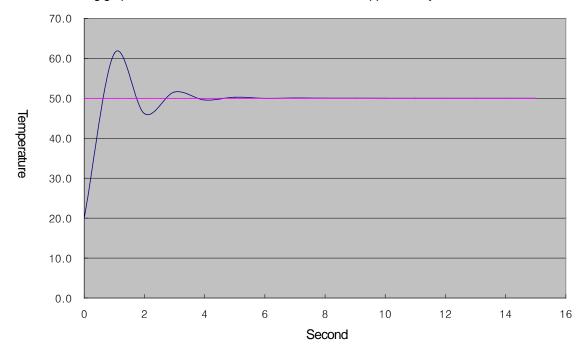
$$MV_p = K_p E$$
(14.3.6)
$$MV = MV_p$$
(14.3.7)

When applying P control to a temporary virtual system, the control tendency features as below.

The following system is made to help you understand; it may be different with the actual temperature (control) system.

In the above simulation, SV is 50.0 and the above tendency is gained by adjusting K_p value properly. The above system shows a stable state in 4 seconds after being operated at 20 °C and it is maintained at 46.2 °C, so the residual drift is 3.8 °C (about 7.6%). As such, the reason why P control has a permanent residual drift is because as closer PV approaches to SV, as smaller error (E) is, reducing MV, so it maintains state balance at equilibrium point (in the example, 46.2 °C). PI control is used to supplement the residual drift intrinsically existing in P control.

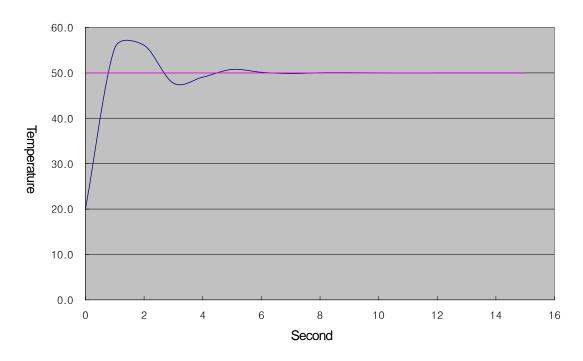
14.3.4 Pl control


ſ

PI (proportional-integral) control is calculated by summing up proportional term and integral term as seen in the equation (14.3.10). To reduce the residual drift, a disadvantage of proportional term, PI control uses integration of the error.

$$MV_{p} = K_{p}E \qquad (14.3.8)$$
$$MV_{i} = \frac{K_{p}}{T_{i}}\int E dt \qquad (14.3.9)$$

$$MV = MV_p + MV_i \tag{14.3.10}$$


Even though error is uniform, the integral is accumulated as time goes on if applying integral calculus until the error is eliminated. Therefore, PI control may be used to supplement the residual drift intrinsically existing in P control. Note that Ti, the integral time constant is the denominator of integral term, so it represents that integral effect is larger as smaller the value of Ti. The following graph shows the results of PI control to P control application system.

As a result of adding integral effect, the residual drift disappears and the system is converged to 50°C accurately. However, the temperature temporarily increased more than a desirable temperature, for which it increased up to 61.2°C and dropped, deepening overshoot. Excessive overshoot may overburden the system or make it unstably, so it is necessary to relieve the overshoot through proper coefficient tuning or improve it by means of PIC control applying differential effect.

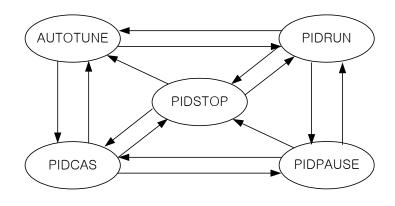
14.3.5 PID control

PID control relieves the vibration of PI control by adding differential effect to PI control as expressed in equation (14.3.1) through (14.3.5). The effect is working when the system's state is changed after comparing to the previous state, irrespective of the error of system. However, it is necessary to install a filter on the sensor's input and set the differential coefficient small to prevent differential effect from operating against a small change as much as a system noise. In case of an actual system, it is common to use $0.001 \sim 0.1$.

14.4 PID Instruction

14.4.1 PID loop state

PID loop has 5 states; PIDSTOP, AUTOTUNE, PIDRUN, PIDCAS and PIDPAUSE.

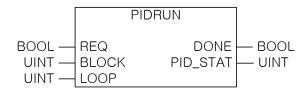

(1) PIDSTOP is the state in which output (MV) is MV_min, its internal state is initialized and user setting is maintained. In the state, it is not possible to access to PIDPAUSE state.

(2) AUTOTUNE is the state that is immediately executed when a user turns on _PID[B]_[L]AT_EN bit either PIDRUN or PIDCAS. If among PIDSTOP, _PID[B]_[L]AT_EN is on, it goes into AUTOTUNE state when it goes toward PIDRUN and PIDCAS. Once AUTOTUNE is complete, PIDRUN or PIDCAS state is restored. AUTOTUNE checks a system's response for a series of inputs and finds PID coefficient (K_p, T_i, T_d) and operation cycle (T_s). These values are updated as soon as Auto-tuning ends, so it loses the previous coefficients.

(3) PIDRUN is the state in which PID loop normally executes control operation. MV is outputted by PID operation and it executes every scan operation independently, so it applies every setting that is changed during the procedure. In case "contact front of PIDRUN instruction is ON", it enters PIDRUN state, or if there is PIDRUN instruction in ladder program and PIDxx_REM_RUN is ON, it may enter PIDRUN state.

(4) PIDCAS is the state in which two loops form a master loop and a slave loop respectively, executing control operation. It is possible to enter PIDCAS state by using PIDCAS instruction after setting these two loops in a way like PIDRUN, and data are exchanged between loops as the internal connection necessary for two loops are automatically created. Loops that operate by cascade are indicated in a state flag, PIDxx_STATE and in the state, remote operation PIDxx_REM_RUM bit does not work.

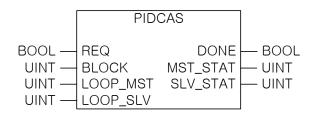
(5) PIDPAUSE is the state in which output, internal state and user setting are maintained and the control operation stops. To enter PIDPAUSE state, it is necessary to turn on PIDxx_PAUSE bit or use PIDPAUSE instruction. However, it is possible to enter PIDPAUSE as long as the previous state is PIDRUN.



14.4.2 PID instruction group

PID instruction group includes four instructions; PIDRUN, PIDCAS, PIDINIT and PIDPRMT. Actually, every operation of PID function is wholly taken by PIDRUN or PIDCAS instruction. PIDINIT and/or IDPPMT instructions works as long as it exists on a ladder program with PIDRUN or PIDCAS instruction, and both exist for the use convenience of PIDRUN or PIDCAS instruction.

(1) PIDRUN


PIDRUN, as a basic PID control instruction, is the instruction taking charge of single PID loop control.

If inputting block number $(0 \sim 7)$ into BLOCK and loop number $(0 \sim 31)$ into LOOP, a loop of the block is selected. PID_STAT displays the operation information for a PID loop, _PID[B]_[L]STATE.

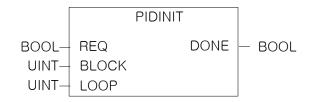
(2) PIDCAS

PIDCAS is the instruction to execute cascade control using two loops.

If inputting block number $(0 \sim 7)$ into BLOCK, master loop number $(0 \sim 31)$ into LOOP_MST and slave loop number $(0 \sim 31)$ into LOOP_SLV, the master and slave of the block are selected. At the moment, the block number of both loops should be same. MST_STAT/SLV_STAT shows the operation information on master/slave loops, _PID[B]_[L]STATE.

Notes

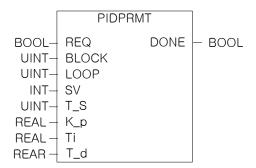
Cascade Operation


Basically, master loop inputs its MV to SV of slave loop during operation while slave loop executes its operation by using SV receiving from master loop.

Besides, both loops always mutually observe part of operation information on each loop (i.e. conversion from/to windup, manual mode and/or auto mode conversion).

(3) PIDINIT

Γ


It initializes the setting and state of a PID loop. At the moment, the initialized area is the setting and state of the designated block[B] and loop[L], and 0 is inputted to every setting of the loop(bit is off.

If inputting block number $(0 \sim 7)$ into BLOCK and loop number $(0 \sim 31)$ into LOOP, a loop of the block is selected.

(4) PIDPRMT

PIDPRMT changes the major settings of PIDRUN including SV, T_s, K_p, T_i and T_d to user-defined values.

If inputting block number $(0 \sim 7)$ into BLOCK and loop number $(0 \sim 31)$ into LOOP, a loop of the block is selected.

14.5 PID Flag Configuration

The table shows the flag configuration when using the built-in PID function for XGR.

Symbol	K device area	Data type	Description
PID[B][L]MAN	%KX[0+1050B+L]	BIT	Select PID output (0: auto, 1: manual)
PID[B][L]PAUSE	%KX[32+1050B+L]	BIT	PID Pause (0: STOP/RUN 1:PAUSE)
PID[B][L]REV	%KX[64+1050B+L]	BIT	Select PID operation (0: forward, 1:reverse)
PID[B][L]AW2D	%KX[96+1050B+L]	BIT	Prohibit PID Anti Wind-up2 (0:allowed, 1:prohibited)
PID[B][L]REM_RUN	%KX[128+1050B+L]	BIT	PID remote (HMI) execution bit (0:STOP, 1:RUN)
PID[B][L]P_on_PV	%KX[160+1050B+L]	BIT	Select PID proportional calculation source (0:ERR, 1:PV)
PID[B][L]D_on_ERR	%KX[192+1050B+L]	BIT	Select PID differential calculation source (0:PV, 1:ERR)
PID[B][L]AT_EN	%KX[224+1050B+L]	BIT	Set PID auto-tuning (0:Disable, 1:Enable)
PID[B][L]MV_BMPL	%KX[256+1050B+L]	BIT	MV non-impact conversion when converting PID mode(A/M) (0:Disable, 1:Enable)
PID[B][L]SV	%KW[24+1050B+32L]	INT	PID target value (SV)
PID[B]_[L]T_s	%KW[25+1050B+32L]	WORD	PID operation cycle (T_s)[0.1ms]
PID[B]_[L]K_p	%KD[13+525B+16L]	REAL	PID P – constant (K_p)
 PID[B]_[L]T_i	%KD[14+525B+16L]	REAL	PID I - constant (T_i)[sec]
	%KD[15+525B+16L]	REAL	PID D – constant $(T_d)[sec]$
	%KW[32+1050B+32L]	WORD	PID PV variation limit
	%KW[33+1050B+32L]	WORD	PID MV variation limit
	%KW[34+1050B+32L]	INT	PID MV max. value limit
	%KW[35+1050B+32L]	INT	PID MV min. value limit
	%KW[36+1050B+32L]	INT	PID manual output (MV man)
	%KW[37+1050B+32L]	WORD	PID State
PID[B]_[L]ALARM0	%KX[592+16800B+512L]	BIT	PID Alarm 0 (1:T_s setting is small)
PID[B]_[L]ALARM1	%KX[593+16800B+512L]	BIT	PID Alarm 1 $(1:K_p is 0)$
PID[B]_[L]ALARM2	%KX[594+16800B+512L]	BIT	PID Alarm 2 (1:PV variation limited)
PID[B]_[L]ALARM3	%KX[595+16800B+512L]	BIT	PID Alarm 3 (1:MV variation limited)
PID[B]_[L]ALARM4	%KX[596+16800B+512L]	BIT	PID Alarm 4 (1:MV max. value limited)
PID[B]_[L]ALARM5	%KX[597+16800B+512L]	BIT	PID Alarm 5 (1:MV min. value limited)
PID[B]_[L]ALARM6	%KX[598+16800B+512L]	BIT	PID Alarm 6 (1:AT abnormal cancellation state)
PID[B]_[L]ALARM7	%KX[599+16800B+512L]	BIT	PID Alarm 7
	%KX[600+16800B+512L]	BIT	PID State 0 (0:PID_STOP, 1:PID_RUN)
	%KX[601+16800B+512L]	BIT	PID State 1 (0:AT_STOP, 1:AT_RUN)
PID[B]_[L]STATE2	%KX[602+16800B+512L]	BIT	PID State 2 (0:AT_UNDONE, 1:DONE)
	%KX[603+16800B+512L]	BIT	PID State 3 (0:REM_STOP, 1:REM_RUN)
PID[B]_[L]STATE4	%KX[604+16800B+512L]	BIT	PID State 4 (0:AUTO OUT, 1:MAN OUT)
PID[B]_[L]STATE5	%KX[605+16800B+512L]	BIT	PID State 5 (0:CAS_STOP, CAS_RUN)
	%KX[606+16800B+512L]	BIT	PID State 6 (0:SLV/SINGLE, 1:CAS_MST)
	%KX[607+16800B+512L]	BIT	PID State 7 (0:AW_STOP, 1:AW_ACT)
PID[B]_[L]PV	%KW[38+1050B+32L]	INT	PID Present value (PV)
PID[B]_[L]PV_old	%KW[39+1050B+32L]	INT	PID previous present value (PV_old)
PID[B]_[L]MV	%KW[40+1050B+32L]	INT	PID Output value (MV)
PID[B]_[L]MV_BMPL_val	%KW[41+1050B+32L]	WORD	PID non-impact operating memory
	%KD[21+525B+16L]	DINT	PID control error
PID[B]_[L]MV_p	%KD[22+525B+16L]	REAL	PID control en of PID output P component
PID[B]_[L]MV_i	%KD[23+525B+16L]	REAL	PID output I component
FID[B]_[L]MV_d	%KD[23+525B+16L]	REAL	PID output D component
PID[B]_[L]DB_W	%KW[50+1050B+32L]	WORD	PID deadband setting (operating after stabilizing)
	%KW[50+1050B+32L] %KW[51+1050B+32L]	WORD	PID deadband setting (operating arter stabilizing) PID differential function Lag filter
PID[B][L]Td_lag	/or\vv[31+1000D+32L]	WURD	

٦

Chapter 14. Built-in PID Function

Symbol	K device area	Data type	Description
PID[B][L]AT_HYS_val	%KW[52+1050B+32L]	WORD	PID auto-tuning hysterisis setting
PID[B][L]AT_SV	%KW[53+1050B+32L]	INT	PID auto-tuning SV setting
PID[B][L]AT_step	%KW[54+1050B+32L]	WORD	PID auto-tuning state indication (setting by user prohibited)
PID[B][L]INT_MEM	%KW[55+1050B+32L]	WORD	PID internal memory (setting by user prohibited)

*
 : Area prohibited from user's setting
 * B : XGR CPUH PID block number [0~7]
 * L : PID loop number [0~31]

Γ

%KX[0+1050B] ~ %KX[287+1050B] area is the common bit area of the block PID loop. The bit state and settings of each bit are collected and arranged on the front of each PID block. Therefore, 32 bits, the max. no. of loops that PID function may use in a block is collected, forming a double-word, and the state and setting of each bit are saved in good order of bits.

%KW0024 ~ %KW0055 area is the individual data area for PID block 0 and loop 0, where the setting and state of block 0 and loop 0 are saved. The loop setting for the PID loop such as SV, dPV_max, MV_man, T_s, Kp, Ti, Td, MV_max, MV_min and dMV_max are saved in the area, and during the execution of PID function, the state of PID loops such as PV, ETC, MV, MV_rvs, ERR, MVp, MVi, MVd and PV are also saved. A user may change PID setting simply by writing data on the memory and get the result reflected to the next cycle.

%KW0056 ~ %KW1047 area is the memory of loop 1 through 31 with the format of block 0 & loop 0. Each loop independently works and may execute auxiliary operation like the application of cascade. Additionally, the K device memory configuration mentioned in the end of user's manual may help you understand the memory location of PID.

The location and order of the memory area as mentioned above may change without prior notice to improve the product performance.

Notes	
1) PID memory statement format	
PID[B][L]MAN B: block, L : loop i.e.) PID3 05MAN : means MAN bit of block 3 and loop 5.	
2) Common bit area	
i.e.) _PID3_25PAUSE : because of block 3 and loop 25, it represents the location of %KX[32+1050B+ = %KX3207.	·L]
3) Individual data area	
i.e.) _PID5_30SV : because of block 5 and loop 30, it represents the location of %KW[24+1050B+32 = %KW6234.	۲ <u>L</u>]

14.5.1 Common bit area

Common bit area is the part that gathers every data consisting of bits for each of 32 loops. It has a double word format of 32 bits as the information on 32 loops for an item; n th bit means the information on the n th loop. m is the value that the loop number, n is converted to a hexadecimal.

(1) _PID[B]_[L]MAN (PID Manual operation enable)

K DEVICE AREA : %KX [0+1050B+L]

Data unit : BIT

It determines whether PID function of n th loop is operated manually or automatically(AUTO/MANUAL). AUTO state outputs the results that PID operation is normally executed while MANUAL state does not execute PID operation and instead, it outputs a use desirable temporary value. At the moment, the output is generated as _PID[B]_[L]MV_man, which is the value a user wishes.

If a bit is off, it is set as [Default] AUTO.

(2) _PID[B]_[L]PAUSE (PID PAUSE mode)

K DEVICE AREA : %KX [32+1050B+L]

Data unit : BIT

It makes n th PID loop in pause state.

If converting PAUSE to RUN state again, it continuously controls. Therefore, since control system may result in unexpected results if the system state is changed in PAUSE, PAUSE function should be carefully used. If the bit is off, [Default] PAUSE is cancelled.

(3) _PID[B]_[L]REV (PID REVerse operation)

K DEVICE AREA : %KX64+1050B+L]

Data unit : BIT

It sets whether a control system is forward system or reverse system.

If system state ascends when system input rises, it is called forward system; if it descends when it increases, it is called reverse system.

In case of boiler, the temperature rises as the system input increases, so it is a forward system. On the other hand, in case of cooling system, the temperature drops as the system input rises, so it is a reverse system. If the bit is off, it is set as [Default] Forward system.

Notes

PID[B][L]PAUSE

If making PID loop in PAUSE state by using PID[B]_[L]PAUSE and PIDPAUSE instruction, every operation stops and it outputs the last calculation before PAUSE state. In the case, if system state is changed, the control system may show unexpected results due to improper control, so PAUSE function should be carefully used.

In the first scan of PLC, since PIDRUN instruction executes initialization, in which PAUSE bit is off, it escapes from PAUSE and turns STOP or RUN state if turning on PLC in PAUSE state.

- Setting area

- Setting area

- Setting area

(4) _PID[B]_[L]AW2D (PID Anti Wind-up 2 Disable)

K DEVICE AREA : %KX[96+1050B+L] Data unit : BIT If the bit is off when a user does not want it, Anti Wind-up2 function is deactivated. The function of Anti wind-up is detailed in 14.6. If the bit is off, [Default] Anti Wind-up2 function is enabled.

(5) _PID[B]_[L]REM_RUN (PID REMote RUN)

K DEVICE AREA : %KX[128+1050B+L]

Data unit : BIT

It is the external operation instruction of PIDRUN.

Being used as an external operation instruction, it functions alike the effect that PIDRUN instruction contact is on/off. Indeed, PIDRUN instruction executes OR operation of "PIDRUN instruction's input condition" contact and the bit to determine whether to execute the operation. If using the function, PIDRUN instruction's operation contact may be assigned to a fixed address, so a user may conveniently use external I/O devices such as HMI. If the bit is off, [Default] (if contact is off), PIDRUN instruction stops.

(6) _PID[B]_[L]P_on_PV (PID P on PV)

K DEVICE AREA: %KX[160+1050B+L]

Data unit : BIT

It sets the P operation source of PID loop as PV. P operation is operated with ERR or PV, and P operation using PV is relatively slow moving to stable state, rather using ERR, in an unstable state of instantaneous control due to initial response or disturbance. It means that output fluctuation is not steep and consequently, it does not overburden the driver. However, since the range of internal operation value changes, Anti Wind-up function does not work. If the bit is off, PID executes P operation with ERR in [Default] state and in case of on, it executes P operation with PV value.

(7) _PID[B]_[L]D_on_ERR (PID D on ERRor)

K DEVICE AREA : %KX[192+1050B+L]

Data unit : BIT

It sets the D operation source of PID loop as ERR. D operation is operated with ERR or PV, and D operation using ERR may cause excessive input to a driver instantly because D response may have sudden change as SV is changed by a user. To prevent it, D operation uses PV and the default is also set to be D operation using PV. If using ERR without the algorithm, the bit should be on. If the bit is off, PID executes D operation with PV in [Default] state, and in ON state, it executes D operation with ERR value.

Notes

PID[B][L]REM_RUN

The bit is saved in K device even though PLC stops, so if PLC stops and operates with the bit ON (i.e. power failure), the system is initialized from the first scan and then, PIDRUN instruction operates.

- Setting area

- Setting area

- Setting area

(8) _PID[B]_[L]AT_EN (PID AutoTuning ENable)

K DEVICE AREA : %KX[224+1050B+L]

Data unit : BIT

ſ

It auto-tunes the PID loop. AT finds out T_s (operation cycle) and PID coefficients (K_p, T_i and T_d) approximately. Before operating AT, it is necessary to set PID[B]_[L]HYS_val item and the functions of AT is detailed in 14.6. If the bit is off, [Default] AT function is disabled and AT is executed at the ascending edge.

(9) _PID[B]_[L]MV_BMPL (PID MV BuMPLess changeover)

- Setting area

- Setting area

K DEVICE AREA : %KX[256+1050B+L]

Data unit : BIT

It calculates MV through operation, reflects it into the internal state and stabilizes MV so that MV is to be smoothly continued as soon as the PID loop is converted from manual output mode to auto output mode. The function is different in algorithm for single operation and cascade operation but both operate with the bit.

If the bit is on (the bit of master loop in case of cascade), it executes Bumpless changeover. In case of off, [Default] Bumpless changeover function is disabled.

Notes

PID[B][L]AT_EN

The bit is initialized to off as soon as PLC is turned to RUN mode, so when PLC stops and operates with the bit on(i.e. power failure), the system is initialized from the first scan and then, it does not go to AT mode again. At the moment, PID setting does not have any change, so the system operates with the state before PLC stops.

PID[B][L]MV_BMPL

For instance, assuming that manual output value is 1000, it is turned to auto output and 2000 output is to be generated, a driver operates the system with 1000 and instantly receives 2000 at the moment of mode conversion. Then, if the bit is ON, the PID loop outputs at the moment of conversion, gradually increases and operates it so that 2000 is to be outputted.

14.5.2 Individual data operation

The individual data area of block B and loop L is %KW[24+1050B+32L] ~ %KW[55+1050B+32L].

(1) _PID[B]_[L]SV (PID Set-point Value)

K DEVICE AREA : %KW[24+1050B+32L]

Data unit : INT [-32768 ~ 32767]

It sets SV of a loop.

As described in the previous chapter, it is the system state that a user wishes. The state is indicated with numbers and it should be converted, based on PV along the system's gain and inputted accordingly.

For instance, if temperature is 50°C, SV should be set to 5000 when controlling the temperature at 50°C in a system in which PV is sensed for 5000.

(2) _PID[B]_[L]T_s (PID Sampling Time)

K DEVICE AREA : %KW[25+1050B+32L]

Data unit : WORD [0 ~ 65535]

It sets the sampling time of a loop.

Sampling time is the cycle of control operation and represents the time cycle of control operation. The sampling time may be set, at least, from 0.1ms up to 6553.5 ms in 0.1ms, and it is also set at the unit of 1 integer per 0.1ms. That is, if setting the sampling time to 100ms, input 1000 to _PID[B]_[L]T_.

Especially, if a user sets the sampling time to 0, it is set in scan cycle control mode and control operation is executed every scan, so the max. speed control operation is executed in the current environment.

If it exceeds the current scan speed due to two short sampling time, _PID[B]_[L]STATE alarm bit is displayed.

(3) _PID[B]_[L]K_p (PID Proportional Gain)

- Setting area

K DEVICE AREA : %KD[13+525B+16L]

Data unit : REAL [-3.40282347e+38 ~ -1.17549435e-38, 0, 1.17549435e-38 ~ 3.40282347e+38] It sets the proportional constant(K_p) of a loop. K_p is multiplied by P, I and D(Proportional, integral and differential) among PID control effects, so if K_p is increasing, differential effect is also larger while integral effect is reduced. Especially, if _PID[B]_[L]K_p setting is 0, it does not execute P control. For details, refer to 14.6. K_p can be set within the range of real number(REAL).

Notes

PID[B][L]SV

PID changes the output (MV) through several operations until SV=PV. Therefore, if SV is 0, PIDRUN seems not to operate. For instance, if the current temperature is 20 degrees and the SV of simple heater of which PV is 2000 (20 degrees) is set to 0, PID outputs 0 as its MV and will not output until PV is cooled down to 0 (0 degrees).

- Setting area

- Setting area

(4) _PID[B]_[L]T_i (PID integral Time gain)

K DEVICE AREA : %KD[14+525B+16L] Data unit : REAL [-3.40282347e+38 ~ -1.17549435e-38 , 0 , 1.17549435e-38 ~ 3.40282347e+38] It sets the integral time constant (T_i) of a loop. T_i divides I (integra) term out of PID control effects, so if T_i is increasing, the integral effect is reduced. Especially, if __PID[B]_[L]T_i setting is 0, it does not execute I control and for details, refer to 14.6. T_i may be set to the range of real number (REAL).

(5) _PID[B]_[L]T_d (PID derivative Time gain)

K DEVICE AREA : %KD[15+525B+16L] Data unit : REAL [-3.40282347e+38 ~ -1.17549435e-38 , 0 , 1.17549435e-38 ~ 3.40282347e+38] It sets the differential time constant(T_d). T_d is multiplied by D(differential) term out of PID control effects, so if T_d is increasing, differential effect is increasing. Especially, if _PID[B]_[L]T_d setting is 0, it does not execute D control and for details, refer to 14.6.

Especially, if _PID[B]_[L] I_d setting is 0, it does not execute D control and for details, refer to 14.6 T_d may be set to the range of real number(REAL).

(6) _PID[B]_[L]dPV_max (PID delta PV MAXimum limit)

K DEVICE AREA : %KW[32+1050B+32L]

Data unit : WORD [0 ~ 65535]

It sets the PV variation of a loop.

In an actual control, PV does not always reflect the accurate state of system. In detail, PV may be reflected with undesirable signals such as sensor's malfunction, noise and disturbance. To prevent it, if PV is changed over the value set in _PID[B]_[L]dPV_max, it protect it primarily, avoiding any change exceeding the value. On the other hand, if _PID[B]_[L]dPV_max is set to small, the convergence time may take longer because system's change is reflected late, make sure to set it suitable for the characteristics of a system.

Especially, if the value is set to 0, the function does not work.

(7) _PID[B]_[L]dMV_max (PID delta MV MAXimum limit)

K DEVICE AREA : %KW[33+1050B+32L]

Data unit : WORD [0 ~ 65535]

It limits the MV variation of a loop.

If control system is rapidly changed, system may not be stabilized or be subject to trouble or unstable operation due to overload on a driver. To prevent it, it limits the output variation of a control. Especially, if the value is set to 0, the function does not operate.

- Setting area

- Setting area

-

- Setting area

- Setting area

(8) _PID[B]_[L]MV_max (PID MV MAXimum limit)

K DEVICE AREA : %KW[34+1050B+32L] Data unit : INT [-32768 ~ 32767] It limits the max value of MV of a loop. It prevents overload by limiting the max. output of a control delivered to output device and cuts off any system error. In addition, it prevents any overflow or other undesirable value from being delivered.

(9) _PID[B]_[L]MV_min (PID MV MINimum limit)

K DEVICE AREA : %KW[35+1050B+32L] Data unit : INT [-32768 ~ 32767] It limits the min. value of MV of a loop. It prevents overload by limiting the min. output of a control delivered to output device and cuts of any system error. In addition, it prevents any overflow or other undesirable value from being delivered.

(10) _PID[B]_[L]MV_man (PID MANual MV variable)

K DEVICE AREA : %KW[36+1050B+32L] Data unit : INT [-32768 ~ 32767] It designates MV if a loop is set as a manual operation. The value set here outputs the value of PID[B]_[L]MV_man as the MV of a loop if _PID[B]_[L]MAN of common bit area is on.

(11) _PID[B]_[L]STATE (PID STATE)

K DEVICE AREA : %KW[37+1050B+32L]

Data unit : WORD [h00 ~ hff] or BIT

It indicates the state of abnormal state of a loop.

It is located at the address of %KW[37+1050B+32L] while each bit(16) has 16 meanings respectively. At present, a part of them are used, among 16 bits.

STATE is on only for a moment that the related operation occurs while the operation is cancelled, it returns to off. The low 8 bits of STATE(_PID[B]_[L]ALARM 0 ~ _PID[B]_[L]ALARM 7) represent kinds of abnormal state of a loop while the high 8 bits of STATE(_PID[B]_[L]STATE 0 ~ _PID[B]_[L]STATE 7) indicates the control state of a loop. Assignment of each bit is as follows.

PID[B][L]ALARM 0 : skipping an operation because T_s setting is too small.

PID[B][L]ALARM 1 : K_p is 0.

PID[B][L]ALARM 2 : PV variation is limited.

PID[B][L]ALARM 3 : MV variation is limited.

PID[B][L]ALARM 4 : MV max. value is limited.

PID[B][L]ALARM 5 : MV min. value is limited.

PID[B][L]ALARM 6 : abnormally canceled during AT.

PID[B][L]STATE 0 : PID operation is in progress(effective in case of PLC run)

PID[B][L]STATE 1 : PID AT is in progress.

PID[B][L]STATE 2 : PID AT is complete.

PID[B][L]STATE 3 : PID is operating remotely by _PID[B]_[L]REM_RUM bit.

PID[B][L]STATE 4 : PID mode is manual output mode.

PID[B][L]STATE 5 : PID loop belongs to cascade.

PID[B][L]STATE 6 : PID loop is the cascade master loop.

PID[B][L]STATE 7 : Anti Wind-up is operating during PID operation.

- Setting area

- Setting area

- Setting area

- Setting disabled

- I/O area

- I/O area

- Setting disabled

(12) _PID[B]_[L]PV (PID Process Variable)

K DEVICE AREA : %KW[38+1050B+32L]

Data unit : INT [-32768 ~ 32767]

It represents the PV of a loop.

PV is the indicator showing the current state of the system and the input from sensor is saved into U device of CPU via input devices such as Analog input module. The value should be moved to _PID[B]_[L]PV by using instructions such as MOV every time it scans. Refer to the examples described in the end of the user's manual.

(13) PID[B]_[L]PV_old (PID previous PV)

K DEVICE AREA : %KW[39+1050B+32L] Data unit : INT [-32768 ~ 32767] It is used for integral/differential operation to the previous PV state of a step of the related loop and it is recommended to refer to it, if necessary. If inputting a temporary value, it may be subject to malfunction.

(14) _PID[B]_[L]MV (PID Manipulated output Variable)

K DEVICE AREA : %KW[40+1050B+32L] Data unit : INT [-32768 ~ 32767] It represents MV of a loop. MV is a signal source to drive a system and conversely as described in 12) _PID_PV, it is delivered to U device by using instruction such as MOV every time it scans and it is used as the input of system drive via output devices such as Analog output module. Also, refer to the examples of program.

(15) _PID[B]_[L]MV_BMPL_val (PID MV BuMPLess changeover VALue) - Setting disabled

K DEVICE AREA : %KW[41+1050B+32L] Data unit : WORD [0 ~ 65535]

A loop saves the information necessary for operating Bumpless changeover. The memory is automatically set and inputted by means of PID internal operation while it is prohibited for a user to set the value.

Notes

Bumpless Change Over

In case PID control returns to auto output mode after being converted to manual output mode, it increases the output from 0 like a control system that is newly started, by which the system is subject to mode conversion impact. That is, a certain output is allowed in manual mode and as soon as it is converted to auto mode, the output rises from 0 again. To prevent the mode conversion impact, it uses MV_BMPL function, which detects the last state of manual mode of the current system during the mode conversion and induces it to continue the control output from the part smoothly. By expanding it, master loop detects the slave loop state with master loop MV_BMPL allowed and creates the control output to be smoothly continued.

(16) _PID[B]_[L]ERR (PID ERRor value)

K DEVICE AREA : %KD[21+525B+16L] Data unit : DINT [-2747483648 ~ 2747483647]

It represents the current error of a loop.

In PID, error is defined as SV - PV. It is used as an indication how far the current state is distance from the desirable state, and if error is 0, it means that the control system state reaches the desirable state. Therefore, ideal control system can be defined that if control starts, error is rapidly reduced from its excessive state and reaches to the normal state, the vibration is minimized and the residual drift(stable state error) is maintained as 0.

(17) PID[B]_[L]MV_p (PID MV Proportional component)

K DEVICE AREA : %KD[22+525B+16L]

Data unit : REAL [-3.40282347e+38 ~ -1.17549435e-38, 0, 1.17549435e-38 ~ 3.40282347e+38] It represents the proportional control value of a loop. If the current system error is known, proportional, integral and differential control outputs can be independently calculated. By comparing three outputs, the operation state of control system and PID control may be accurately comprehended while MV is calculated with the sum of MV_p, MV_i and MV_d.

(18) _PID[B]_[L]MV_i (PID MV Integral component) - Setting prohibited
---	------------------------

K DEVICE AREA : %KD[23+525B+16L]

Data unit : REAL [-3.40282347e+38 ~ -1.17549435e-38 , 0 , 1.17549435e-38 ~ 3.40282347e+38] It displays the integral control value of a loop.

(19) _PID[B]_[L]MV_d (PID MV Derivative component)

K DEVICE AREA : %KD[24+525B+16L] Data unit : REAL [-3.40282347e+38 ~ -1.17549435e-38 , 0 , 1.17549435e-38 ~ 3.40282347e+38] It displays the differential control value of a loop.

(20) _PID[B]_[L]DB_W (PID DeadBand Width)

- Setting area

- Setting prohibited

- Setting disabled

- Setting disabled

K DEVICE AREA : %KW[50+1050B+32L]

Data unit : WORD, Range [0 ~ 5000]

It sets the deadband of a loop. The only positive value is available and it operates within the area set up and down the SV. That is, if PV is within the section of $[SV - DB_W] \sim [SV + DB_W]$, it is necessary to substitute SV for PV(can not checked externally). If setting the value to 0, the function does not work.

Notes

Deadband

It is used to eliminate small output flunctuation resulting from small change of state as PV approaches to SV. If inputting a value into DB_W during PID control, a deadband is formed as much as up/down of SV. If PV follows SV and enters the inside of deadband during control, ERR is forcibly calculated as 0 and the change of MV stops as long as PV remains in the section. That is, it's like the pause to control in a stable section and through it, a driver receives input uniformly while it operate stably and helps it not to be overburdened. It is recommended to use it after the system is properly stablized in a section set as deadband. The reason is because a control may suffer from temporary transient phenomena while entering into the deadband.

K DEVICE AREA : %KW[51+1050B+32L]

Data unit : WORD [0 ~ 65535]

It sets the primary delay filter, based on the differential calculation, of a loop and makes the differential effect reacting as an instant impact more smooth and constantly. If setting it higher, it may result in more smooth differential output. If setting it as 0, the function does not work. It is normally used to avoid excessive force on drivers as the system output slightly vibrates by differential vibration.

(21) _PID[B]_[L]AT_HYS_val (PID Autotuning HYSteresis value)

K DEVICE AREA : %KW[52+1050B+32L]

Data unit : INT [-32768 ~ 32767]

It sets a proper directional deadband during AT of a loop. _PID[B]_[L]AT_HYS_val value operates as a high deadband when PV increases or as a low deadband when PV decreases. Successful AT results depend on setting it properly. How to set _PID[B]_[L]AT_HYS_val is described in 14.7.4.

(22) _PID[B]_[L]AT_SV (PID Autotuning SV)

K DEVICE AREA : %KW[53+1050B+32L] Data unit : INT [-32768 ~ 32767] During AT of a loop, AT_SV used for SV is separately set. AT vibrates 3 times up and down around AT_SV.

(23) _PID[B]_[L]AT_step (PID Auto-tuning step)

K DEVICE AREA : %KW[54+1050B+32L] Data unit : INT [-32768 ~ 32767] It displays the AT operation state of the loop. _PID[B]_[L]AT_step may have a value between 0 ~ 7; 0 indicates AT operation is not started while 7 indicates AT operation is complete. And, 1, 3 and 5 are PV increasing section and 2, 4 and 6 are the PV decreasing section.

1) Setting prohibited : It is prohibited to set any item with the indication of -Setting prohibited among the items described in the above common bit area and individual loop area. The area not only displays operation information to a user but also saves the information necessary for operation, so the control system may malfunction if setting it temporarily.

Caution

2) **I/O area** : _PID[B]_[L]PV and _PID[B]_[L]MV are – **I/O area** respectively, so it is necessary to connect to external devices(A/D, D/A and others).

(20) _PID[B]_[L]Td_lag (PID Td lag filter)

- Setting area

- Setting area

- Setting area

- Setting prohibited

Notes	S		
	Transient state and normal state	9	
			trolling and searching for a desirable control n which integral value is stabilized, it may
	 Normal state : the state that a completely eliminated but it may 		lesirable state via transient state. Vibration is out has little change.
	High / low deadband		
	part of noise component. The P during which it increases and de a moment of SV=PV, there is hi That is, it's like a digital switch's	ID control instruction execut ecreases PV from SV 3 time igh/low convergence once b chattering. To overcome it, l dband value is applicable or	D device, almost signals may have even a es auto-tuning by using the converted value, is. During the procedure, if noise is inputted at ut it may recognize it as several conversions. PID control uses unidirectional deadband hly for high section of SV when the system's
	≜	Mode	Mode
	C	conversion d	conversion
	High deadb	and	\ High deadband
	sv []]]]		
		Low deadband	
	PV		
			→ Time
	I		

٦

14.6 Convenient Functions of PID Instruction

The chapter describes additional functions that may be conveniently used with PID instructions.

14.6.1 Various control methods including PID

The most commonly used PID controls are P control, PD control and PID control. Meanwhile, if expecting several characteristics(mostly stabilization), ID control, I control and D control, which are slightly complicate than the above-listed controls, are often used. To enable various controls, PIDRUN instructions support the function to allow or prohibit such controls by P, I and D components.

For instance, in case of P control, it may be structured by setting _PID[B]_[L]Ti and _PID[B]_[L]Td as 0. If PI control is desired, set _PID[B]_[L]Kp and _PID[B]_[L]Ti only and input 0 to _PID[B]_[L]Td. Then, if you wish to use ID control, set _PID[B]_[L]Kp as 0 and set the remaining _PID[B]_[L]Ti and _PID[B]_[L]Td.

Likewise, ID control sets 0 to _PID[B]_[L]Kp and substitutes each ID control coefficient to _PID[B]_[L]Ti and _PID[B]_[L]Td. However, interestingly, ID control has 0 output theoretically once setting 0 to _PID[B]_[L]Kp(refer to equation 14.3.2 through 14.3.5). In addition, actual PIDRUN instruction calculates MVp = 0 and $K_p = 1$ internally if inputting 0 to _PID[B]_[L]Kp, enabling ID control, I control and D control.

14.6.2 Operation and function of Anti Wind – up

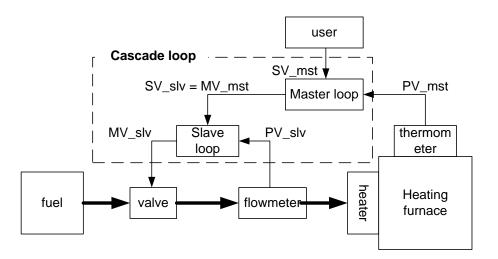
PIDRUN instruction supports two wind-up prevention functions; Anti Wind-up 1 and Anti Wind-up 2. The former one that is basically supported may work for controls including I control, PI control, ID control and PID control and may not be cancelled. The operation principle is to limit MVi(integral result) to _PID[B]_[L]MV_max and _PID[B]_[L]MV_min. On the other hand, Anti Wind-up 2 is organically connected MVp(proportional term result). If only with MVp, MV may reach \pm (_PID[B]_[L]MV_max) because of a large system error, MVi maintains the previous value without any calculation. Therefore, if an error is large, it induces PV to move to SV only with MVp, not integral nor differential, resumes I control and prevents MVi from being excessively accumulated. On the other hand, a user may cancel an operation if Anti Wind-up 2 makes _PID[B]_L]AW2D bit on the common bit area ON. And, like PI control and PID control, it works for a control accompanying with P control and I control.

14.6.3 Operation and function of Auto-tuning

PIDRUN instruction has the AT function that tests a system through several basic settings and calculates _PID[B]_[L]T_s, _PID[B]_[L]K_p, _PID[B]_[L]T_i and _PID[B]_[L]T_d, suitable for the system. The values such as _PID[B]_[L]MV_min, _PID[B]_[L]MV_max, _PID[B]_[L]AT_HYS_val and _PID[B]_[L]AT_SV should be set before AT while the AT function sets MV three times in good order of _PID[B]_[L]MV_max and _PID[B]_[L]MV_min, operates it, checks the system's state(PV) response, measures the time and vibration degree to reach to the AT target value(AT_ST) and finally, calculates _PID[B]_[L]T_s, _PID[B]_[L]T_i and _PID[B]_[L]T_d suitable for the measurements. To calculate the accurate tuning value, refer to the AT setting described in 14.7.4 and induce the AT operation accordingly.

Notes	
Auto-tu	ning
_PI pos	he moment when a series of works end, AT may automatically substitutes _PID[B]_[L]T_s, D[B]_[L]K_p, _PID[B]_[L]T_i and _PID[B]_[L]T_d, which are calculated, to the corresponding itions, so a user must note that _PID[B]_[L]T_s, _PID[B]_[L]K_p, _PID[B]_[L]T_i and D[B]_[L]T_d that are used before are to be eliminated.

14.6.4 Operation and function of cascade


PIDCAS instruction executes CASCADE PID control by operating two PID loops. In general, CASCADE PID control is used for chemical process or temperature control through fuel and at the moment, two loops used are called master and slave, respectively. For instance, assuming temperature control through fuel's flowrate, in case of single loop PID control, it opens fuel valve and control fuel's flow, with which it controls the temperature of heating furnace. Therefore, a single PID loop is a system to indirectly control temperature. As such, the application of cascade PID requires installing fuel's flowmeter on a system, which is divided into flow control and temperature control. That is, slave loop controls a flow by using a valve while master loop controls temperature by using the flow. In the case, master loop delivers a desirable flow to slave loop, which monitors, in turn, the flowmeter so that fuel is supplied as much as flow needed by master loop and controls flow by using a valve. Simply, slave loop operates only with the target flow received from master, irrespectively of temperature. Now, looking into the cascade operation, master loop measures temperature(PV_mst) at relatively later cycle than slave loop, calculates the flow value(MV_mst) calculated for a desirable temperature(SV_mst) and delivers it to slave loop. Slave loop sets the flow value(MV_mst) received from master as its target(SV_slv), measures the fuel input at more frequency than master loop and adjusts the valve open/close(MV_slv).

Therefore, cascade plays a role to deliver the MV(MV_mst) of master loop to SV of slave loop(SV_slv) with two loop operated.

If slave loop is converted to manual output state, master output is not used, so master loop is also converted to manual output mode.

At the moment, the manual mode _PID[B]_[L]MAN bit is not on in the master loop. At the moment when slave loop is converted to auto output mode again, master loop is also converted to auto output mode, when if _PID[B]_[L]MV_BMPL is on, it exchanges state data between two loops, smoothly executing the conversion.

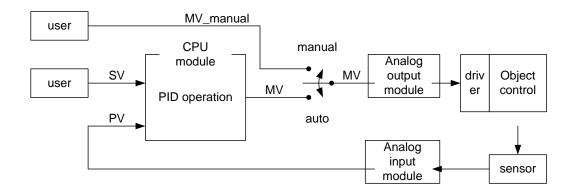
If slave loop is caught in anti-windup, master loop operates in PIDPAUSE mode. As such, despite of anti-windup, if it increases or decreases the target slave value(SV_mst), the second windup for the entire cascade loop is prevented. The function operates in accordance with the conditions without setting and _PID[B]_[L]PAUSE bit is not on.

Notes

Cascade system's auto-tuning

Cascade system's AT auto-tunes slave loop first and then, it does master loop. However, to auto-tune slave loop, it is necessary to anticipate how much SV the slave lop receives from master loop, and if setting the value as AT_SV, the slave loop operates as an independent loop. AT performance depends on the anticipated value. Once it starts working properly after the AT of slave loop, it executes AT of master loop.

14.7 Directions of PID Instructions


The chapter describe the directions of PID instructions.

Please refer to the manual for the details on CPU, special module and XG5000 functions.

14.7.1 Hardware Configuration

I

The example system is structure as follows.

(1) CPU (XGR-CPUH)

CPU is a PID control because PID operation is executed here. A control receives the data sensed by an input module, calculates the output through operation and delivers it to an output module. At the moment, a user should connect I/O and design(tune) the inside of PID control. In general, input and output use Analog input modules and Analog output modules, respectively.

(2) Analog module and parameter registration

To use Analog module, it is necessary to register them to a project and set them properly. First of all, install analog modules and use the I/O synchronization function of I/O information module to register them.

I/O information		? 🛛					
Base module information	Slot I/O in	formation					
gene 📶 Base 00	Slot	Module					
🗂 Base 01	0	XGF-AV8A (Voltage, 8-CH)					
	1	XGF-DV4A (Voltage, 4-CH)					
600 Base 03	2						
Base 05	3						
Base 06	4						
10 Base 07	5						
	6						
	7						
	8						
	9						
	10						
	11						
I/O Sync. Details OK Cancel							

Once a module is registered, it is necessary to register a parameter to use among the parameters assigned to the module, as the global parameter.

(3) Analog input module (XGF-AV8A)

It functionally receives the state of an object to control from a sensor and delivers it to CPU. Analog input module channel 0 receives 0 ~ 5 V as its input and delivers the output, a digital value to PLC. Then, XGF-AV8A has 8 channels(CH0 ~ CH7). AGF-AV8A setting may be changed in the I/O parameter setting window, which appears when selecting I/O parameter in 'Parameter' item of project window. Change CH 0 to 'Operate' and set the input range to 0 ~ 5V(set along a sensor). Output data type is the PV of PID control, and the range of the value for PID control is to be set between 0 ~ 1000.

Now, the $0 \sim 5$ signal detected from a sensor during Analog input module operation is converted to a digital value between $0 \sim 1000$, which is x2000, and it is delivered to PLC.

The following figure shows the setting window of XGF-AV8A in XG5000.

O All Base Set Base]							
iedi 🕞 👘 Base M : De	fault 🔼 Sid	t Mod	ule	Comment	Input Filter	Emergency Out	Allocation	
Pr 📄 🗂 Base 01 : De			age, 8-CH)					
lew 00 : XGF-	-AV8A (1	XGF-DV4A (Volt			-	-		
Fu B 01 : XGF- Da 02 : Dofo		ì						
GF-AV8A (Voltage, 8-	-CH)							?
Parameter	СНО	CH 1	CH 2	CH 3	CH 4	CH 5	CH 6	CH 7
Parameter Channel status	CH 0 Enable	CH 1 Disable	CH 2 Disable	CH 3 Disable	CH 4 Disable	CH 5 Disable	CH 6 Disable	CH 7 Disable
Channel status	Enable	Disable						
Channel status	Enable 0~5V	Disable 1~5V						
Channel status Input range Output type	Enable 0~5V 0~10000(% 🗸	Disable 1~5V 0~16000						
Channel status Input range Output type Filter process	Enable 0~5V 0~10000(%) 🗸 Disable	Disable 1~5V 0~16000 Disable	Disable 1~5V 0~16000 Disable	Disable 1~5V 0~16000 Disable	Disable 1~5V 0~16000 Disable	Disable 1~5V 0~16000 Disable	Disable 1~5V 0~16000	Disable 1~5V 0~16000
Channel status Input range Output type Filter process Filter constant	Enable 0~5V 0~10000(% ~ Disable 1	Disable 1~5V 0~16000 Disable 1						

(4) Analog output module (XGF-DV4A)

Analog output module functionally converts the control output digital value, which is created by PLC's control operation, to 4mA ~ 20mA and delivers it to a drive of an object to control. XGF-DV4A model has totally 4 channels and like XGF-AC8A, it may be changed in the I/O parameter setting window. It is necessary to change CH0 to 'Operate' and set the output range to 0 ~ 5V (set along a driver). The MV digital output of 0 ~ 1000, which is created by PID control operation is reduced as small as 1/2000 and it is delivered to the signal of the driver. The figure shows the setting window of XGF-DV4A in XG5000.

🗂 Base 00 : Def 🗂 Base 01 : Def	XGF-DV4A (Voltage, 4	-CH)			?	Allocation
00 : XGF-/	XGF-DV4A (Voltage, 4-CH)					
👝 02 : Defaul	Parameter	CH 0	CH 1	CH 2	CH 3	T
👝 03 : Defaul	Channel status	Enable	Disable	Disable	Disable	
04 : Defaul	📃 Output range	0~5V	1~5V	1~5V	1~5V	
	Input type	0~10000(%)	0~16000	0~16000	0~16000	
07 : Defaul	CH. Output type	Min value 🛛 🐱	Former value	Former value	Former value	
08 : Defau 09 : Defau 09 : Defau 01 : Defau 01 : Defau 01 : Defau 01 : Defau 02 : Defau 03 : Defau 03 : Defau 04 : Defau 04 : Defau 05 : D				OK	Cancel]

(5) Register parameter

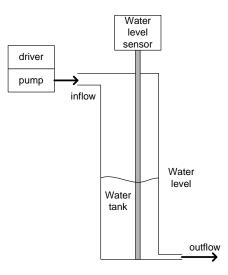
ſ

To approach Analog input module and Analog output module, it is necessary to register the parameter of each module prior to use. A parameter of every special module installed may be automatically registered through the auto registration of special module parameter of Edit menu after opening Global Parameter in the project window.

🐐 XG5000 - [Global/Direct Variables]										
🕌 Project	<u>E</u> dit	Eind/Replace View	<u>O</u> nline <u>M</u> onito	r <u>D</u> ebug	<u>T</u> ools <u>W</u> indow	v <u>H</u> elp				
0 🖻 🛱	\Box	Undo	Ctrl+Z			🛍 🗙 🔤 🕅 🖓	. 😒 🛛 🚲 🚜			
-	<u></u>	<u>R</u> edo	Ctrl+Y							
	Ж	Cu <u>t</u>	Ctrl+X			3 . W 2 8	[[<u>]</u> [][][[][[]			
ESC 15 14	Ē	⊆ору	Ctrl+C	P4 SF	5 SF6 F10 SF7		3 F 🖬 🎬			
Project Windo	C.	Paste	Ctrl+V		1		1			
Items	\mathbf{X}	<u>D</u> elete	Del	V GI	obal Variable	D Direct Variable Comme	nt 🛛 🚺 Flag			
🖃 🐺 kaka		Select All	Ctrl+A		Variable Kin		Туре			
📄 🗇 🗊 I		-		4	VAR_GLOBAL		UINT			
	매읍	Insert Line	Ctrl+L	5	VAR_GLOBAL	······································	BOOL			
	×	Delete Li <u>n</u> e	Ctrl+D	2		CO _FOO_AVG_EN	UINT			
		Export to <u>Fi</u> le		3		CO _FOO_AVG_SEL CO _FOO_CHO_AVG_V	UINT UINT			
		Register Special Modul	le Variables	9	VAR_GLOBAL_	CO _FOO_CHO_FILT_C	UINT			
		rke <u>d</u> iscer opecial modal)	VAR_GLOBAL_	CO _FOO_CH1_AVG_V	UINT			
		Add EXTERNAL Variabl	le "V	1	VAR_GLOBAL_	.CO _F00_CH1_FILT_C	UINT			
[[Move Item Up		2		CO _FOO_CH2_AVG_V	***************************************			
				3		_COFO0_CH2_FILT_C				
		Move Item Down		4		CO _FOO_CH3_AVG_V				
				55		CO _FOO_CH3_FILT_C	****			
				56		CO _FOO_CH4_AVG_V				
				57		CO _FOO_CH4_FILT_C				
				58	IVAR GLOBAL	CO 🕴 EOO CH5 AVG V	LIINT			

Among them, select parameters necessary for executing the ladder program and register them as the local parameters.

AR_EXTER		H0_ACT	BOOL			Г	Г	Analog Input Module: CH0 Act
-		IO_ACT	DOOL					Analog Input Module: Cirlo Act
AR_EXTER	NA 🗾		<u> </u>			Г	Г	
Select	t Variable							? 🗙
Variable:						OK		
	-						_	
Variable	al Variable	Discover				Cancel		
0 0100	ai variable) Direct vari	able – O Flag			Global Vari	able	
- Flag Vie	NA .						able	
List:	System		All			New Varia	ble	
LISU.		×	A					
						Edit Varia	ble	
						Delete Vari	- h la	
	Variable Kind	Variable	Name Type	Memory Address Initia	il Value 🛛 🔼	Delete Vall	able	
	VAR_GLOBAL							
	VAR_GLOBAL							
	VAR_GLOBAL							
	VAR_GLOBAL							
	VAR_GLOBAL							
	VAR_GLOBAL							
	VAR_GLOBAL							
	VAR_GLOBAL							
	VAR_GLOBAL							
	VAR_GLOBAL							
	VAR_GLOBAL							
	VAR_GLOBAL	00_CH3_	IDD BOOL					
13	VAR_GLOBAL	_00_CH4_	ACT BOOL					
	VAR_GLOBAL				v			
					>			
<								


(6) Sensor and driver

Besides Analog output module, sensor and driver are media to deliver a state to a control from an object to control and deliver the output of a control to an object to control from a control. Therefore, the output created by a sensor should be used as an input of Analog input module while the output created by Analog output module should be used as the input of driver. For instance, if a sensor is current type of 4mA ~ 20mA, it should be Analog input module type of 4mA ~ 20mA. In

addition, if a driver is voltage type of 0V ~ 5V, Analog output module should be also voltage type of 0V ~ 5V. The output of Analog output module is used as a drive signal of a driver. If it is used directly as the motive power of driver, PLC may be subject to malfunction.

(7) Object to control

The system uses water level control system as its object to control. The water level system is designed to supply water to a water tank of which bottom is slightly open and maintain a desirable water level. The water in a tank uniformly flows out and the increase/decrease of water depends on the water inflow by means of a pump. The structure of the water control system is as follows.

14.7.2 Program example 1

The figure shows a program example to execute PID control by using Analog input module and Analog output module. (but, PID constant and SV value are set in the parameter monitor window in the program)

Comment	transmits the A/D conversion module input to each PV of loop0, loop1		
L7			
L2	_0100_CHPID0_00P 0_DATAINOUT;V		
L3			
Comment	executes the PID block 0, loop 0 and when completing the execution, it allows the output of DIA conversion		
L5			%MX0 : PID operation
		_0101_CH 0_OUTEN	condition _0101_CH0_OUTEN: activates the D/A output
Lô			
L7			
L8			
Comment	transmits the _PIDD_00MV to D/A conversion module output		
L10			
L77	0000		
L12			

L1 : delivers Analog input data to PV of PIDRUN instruction by using constant On contact.

L5 : If %MX0 bit is on, it executes the control operation of PIDRUN block 0 and loop 0 and if it is complete, it activates D/A output. If D/A output is deactivated, the module outputs the value set when it is registered.

L10 : Delivers MV output of PIDRUN instruction to Analog output data by using constant ON contact.

14.7.3 PID control

Γ

(1) Register parameter monitor

Register PID parameters in the parameter monitor window and execute control setting.

If clicking the right button of mouse in the parameter monitor window and selecting, "Register in Parameter/Comment", it is possible to view "Select Parameter/Device" window. If selecting PID in "List", canceling "View All" and inputting 0 to "Block No." and "Parameter No.", a user can see the parameter to save the setting and state of block 0 and loop 0. If selecting all parameters and checking "OK", it is possible to monitor parameters and change the values even during the program RUN.

🔲 Select Variable 🔹 🤶 🔀					
Variable: Variable O Loca	OK Cancel Global Variable				
- Flag Vie List:	PID	► AII	Block number: 0 Loop number: 0	New Variable Edit Variable	
1	Variable Name PID0 MAN	Type DWORD	Comment A	Delete Variable	
2 3 4	_PID0_00MAN _PID0_PAUSE PID0_00PAUSE	BOOL DWORD BOOL	PID Output Select (0:Auto, 1:Manual) PID PAUSE (0:STOP or RUN 1:Paus PID PAUSE (0:STOP or RUN 1:Paus		
5 6 7	_PID0_REV _PID0_00REV _PID0_AW2D	DWORD BOOL DWORD	PID Operate Direction (0:Forward, 1:F PID Operate Direction (0:Forward, 1:F PID Anti Wind-up2 (0:Enable, 1:Disat		
8 9 10	_PID0_00AW2D _PID0_REM_RUN _PID0_00REM_RU	BOOL DWORD BOOL	PID Anti Wind-up2 (0:Enable, 1:Disat PID Remote RUN bit for HMI (.0:STO PID Remote RUN bit for HMI (.0:STO		
11 12 13	_PID0_P_on_PV _PID0_00P_on_PV _PID0_D_on_ERR	DWORD	PID Proportional term (0:on ERR, 1:o) PID Proportional term (0:on ERR, 1:o) PID Derivative term (0:on PV, 1:on EF		
14	_PID0_00D_on_ER	BOOL	PID Derivative term (0:on PV, 1:on Ef 🗙		

(2) Getting SV

To set SV, it is necessary to know PV conversion value of a system that a user desires. Simply, if a user desires to maintain the water level at 250mm, it searches for the PV value indicating 250mm. The value can be found by numerical analysis but it is more accurate to check it by using the response of an object to control experimentally. In the system, it was analyzed that PV outputs 8333 when the water level is 250mm, but as a result of operating it actually, the sensor output value was 8250. The cause of the error must be attributable to inaccurate sensor, error of measurement reference point and others. Therefore, 8250, the value actually measured should be used as the state value of water level 250mm. The value is also used as SV when controlling 250mm.

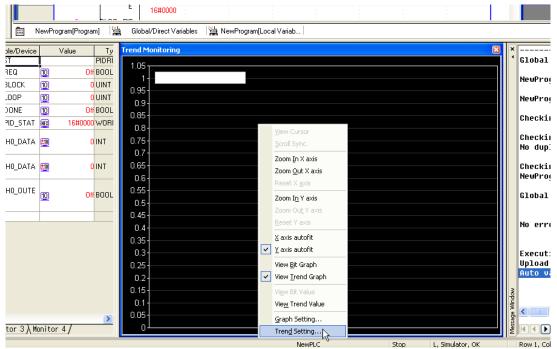
(3) Control setting

Download the previously created program to PLC and start monitoring. Then, set the parameters registered to the parameter monitor window. The following figure shows the view of example program's parameter monitor window.

1∎ P 1∎ P 1∎ P	tion Name DPRMT DINIT DCAS DRUN OVE		L5 INS %MX0 PIDR MewProgram [Program]				
×	PLC	Program	Variable/Device	Value	Туре	Device/Variable	Comment
1	NewPLC	NewProgram	🗉 INST		PIDRUN		
2	NewPLC	NewProgram	INST.REQ	10	BOOL		
3	NewPLC	NewProgram	INST.BLOCK	10	UINT		
4	NewPLC	NewProgram	INST.LOOP	10	UINT		
5	NewPLC	NewProgram	INST.DONE	10	BOOL		
6	NewPLC	NewProgram	INST.PID_STAT	HEX	WORD		
7	NewPLC	<global></global>	_0100_CH0_DATA	<u>1</u>	INT	%UW1.0.2	아날로그입력 모듈: 채널0변환값
8	NewPLC	<global></global>	_0101_CH0_DATA	<u>10</u>	INT	%UW1.1.3	아날로그출력 모듈: 채널이입력값
9	NewPLC	<global></global>	_0101_CH0_OUTEN	10	BOOL	%UX1.1.32	아날로그출력 모듈: 채널0 출력상태설정
10							

Settings include three; SV, K_p and MV_max.

SV is set to 8250, which is actually measured and Kp is given with 5 temporarily. MV_max is an item to limit the max. value of MV and is set to 1000 in accordance with ADC / DAC module.

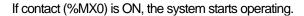

(4) Control state observance using trend monitor

Γ

It activates trend monitor among the monitor functions of XG5000.

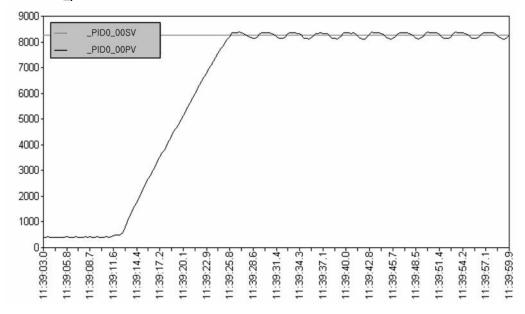
· Debug Iools Window Help	
1월 🖓 🛛 오르 사 🖻 🛍 🗙 영황 동 옷 🛛 🗛 왕 왕 삶 🔐 🙆 😒	
常々ななない。 200日月2月 1900 いっしつつ 単型型原菌の 42 20 20 10 10 10 10 10 10 10 10 10 10 10 10 10	\$ F9
bl ◎ ● 📑 📹 + R # 🗐 💌 🗹 🗹 🖬 🖬 🖉 🖗 🖉 🖬 📲 🖗 🚳 📓 着 👘 👘 👘	i ở ở ở
NewProgram[Program]	
Comment tranmits A/D conversion module input to _PID0_00PV	
Trend Monitoring	
√ Sallow Docking Filoating window ✓ MDI Child	
Dock) MDI Child)	

By allowing the docking of trend monitor, arrange it properly.


By means of trend setting, register the data to observe.

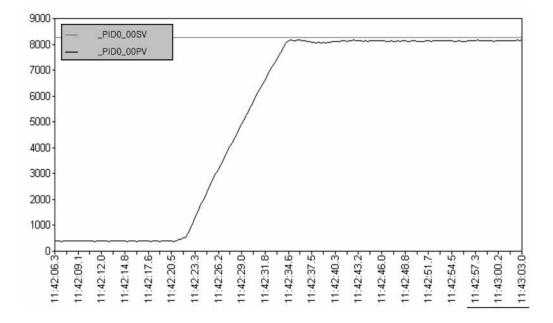
Trend	Setup			? 🔀
Sample setting Max. sample to display: 1000 Sample, Time: 1000 sec. Max. sample to keep: 1000 Sample, Time: 1000 sec. Frequency: 1000 ms				
_	t Graph Trend Gr	aph		
ID	Program	Variable Name	Device	Туре
1	NewProgram	_PID0_00SV		INT
2	NewProgram	_PID0_00PV		INT
3				
<				>
OK Cancel				

1

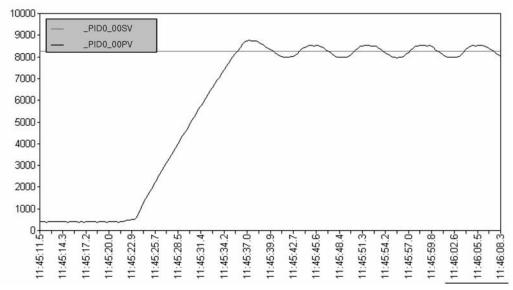

Set the monitoring cycle as 200ms, select the trend graph tab on the bottom and register the parameters to monitor such as SV and PV of block 0 and loop 0.

(5) Program execution (here, an example is introduced to show how to find a parameter manually and for auto tuning, refer to 14.7.4)

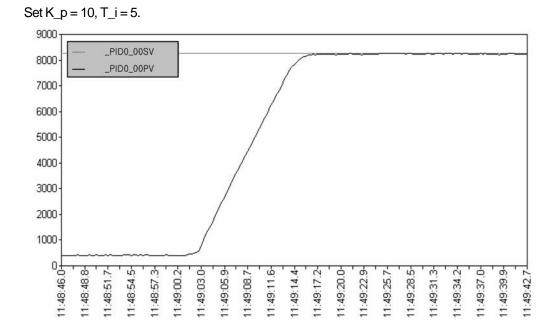
ſ



Increase K_p to 100 and restart it.


It can be found that it uniformly and permanently vibrates due to too large K_p.

Set 'K_p = 20, T_i = 100'.



Due to too large T_i, the normal state residual drift lasts and there is a slight overshoot.

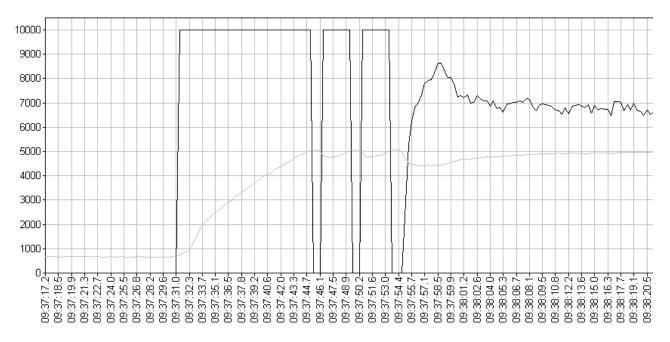
Set K_p = 10, T_i =1.

Due to too small T_i, PV is slowly fluctuating.

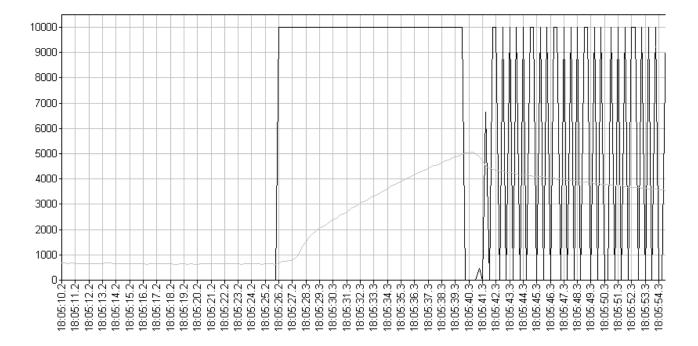
It shows the satisfactory results.

I

The current system is the system slow enough to control only with PI, so it executes PI control only. Therefore, tuning results are $K_p = 10$, $T_i = 5$, $T_d = 0$.


14.7.4 AT (Auto-tuning) operation

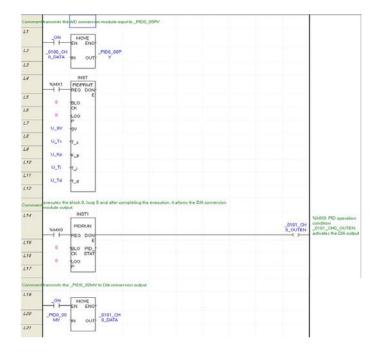
While using and operating the system described in the above 14.7.3, especially using AT function, check the setting of AT. The basic AT function may operate with the system not operated, that is, when the system has a PV less than _PID[B]_[L]AT_SV (smaller one in case of reverse operation). Basically, AT executes different operation by stages while step increases form 0 to 7 and the step of the current loop can be checked by _PID[B]_[L]AT_step. In PIDSTOP state, AT step is 0 but once AT starts, it increases (automatically) from 0 up to 7, at which AT stops. Therefore, it may be subject to malfunction if a user manipulates the steps.


To avoid duplicate, apply the setting after trying to execute up to (4) of the above 14.7.3.

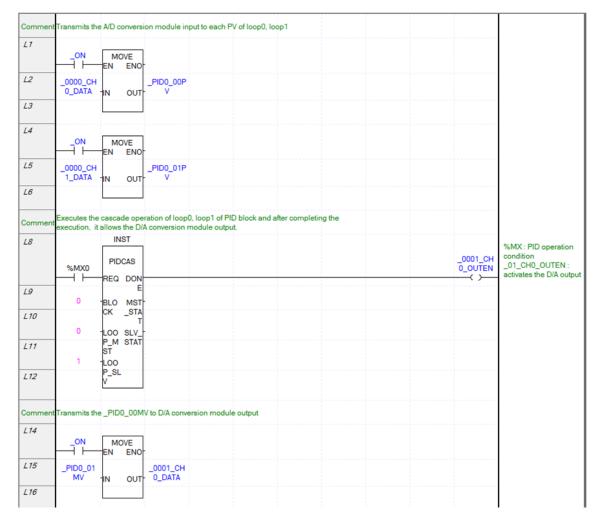
Now, set _PID[B]_[L]AT_SV. Although _PID[B]_[L]SV value was already set in the above, PV vibrates the system during AT so to be over _PID[B]_[L]SV, so it is necessary to set a SV value suitable for the case harmful to the system into _PID[B]_[L]AT_SV. In other cases, make sure to set _PID[B]_[L]AT_SV like _PID[B]_[L]SV. _PID[B]_[L]AT_SV value is used only during AT and once AT is complete, it automatically operates the system, based on _PID[B]_[L]AT_SV. Next, set _PID[B]_[L]MV_min and _PID[B]_[L]MV_max. In AT, _PID[B]_[L]MV_min and _PID[B]_[L]MV_max are respectively regarded as the min./max. outputs of the system. During AT, both values change in 3 cycles, depending on the system speed(how fast PV approaches SV). For instance, in case of _PID[B]_[L]MV_min = 0, _PID[B]_[L]MV_max = 10000, the system operation signal(MV) that is delivered to motor or heater repeats the output, $0 \rightarrow 10000 \rightarrow 0$ three times. As such, in case there is any possibility that a sudden change overburden the system, it is necessary to set _PID[B]_[L]dMV.

Then, set _PID[B]_[L]HYS_val, which is used only during AT. As a deadband that occurs when PV approaches SV, it occurs higher than the reference during ascent while it does lower than the reference during descent. That is, if SV is 5000 and _PID[B]_[L]HYS_val is 100, AT increases PV by maintaining MV as _PID[B]_[L]MV_max up to 5100 ($SV + _PID[B]_[L]HYS_val$) and then, it maintains MV as _PID[B]_[L]MV_min up to 4900 ($SV - _PID[B]_[L]HYS_val$), executing tuning while reducing PV.

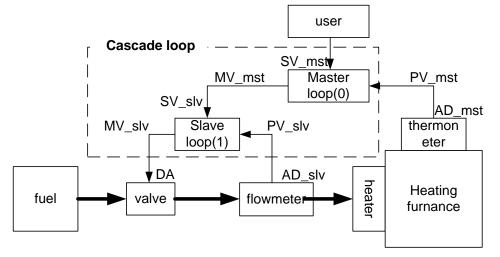
The above graph is the water level waveform gained by setting _PID[B]_[L]HYS_val value (50 in the example) properly and MV should have 3 square waveforms as seen in the figure.



In the above graph, _PID[B]_[L]HYS_val is set too small (10 in the figure), so if no.3 square wave form on MV, which is gained from the water level waveform, is not clear, accurate AT operation may not be secured. In addition, too large _PID[B]_[L]HYS_val is inputted, the system may slow down disadvantageously.


14.7.5 Program example 2

Γ


The figure shows the program that PID constant and SV setting are changed in the program. If PIDPRMT contact (%MX01) is on, user defined values like U_SV, U_Ts, U_Kp, U_Ti and U_Td are inputted as PID parameters and it is also allowed to use monitor window as presented in 14.7.3.

14.7.6 Cascade operation

The above ladder program is the view of cascade configuration, based on the following block diagram.

The above block diagram is the system to measure the temperature of heating furnace, supply fuel to the heater and maintain a desirable temperature.

Also, to control the signal delivered to fuel valve more actively, if installing a flowmeter and structuring a slave loop, it supplies a uniform fuel on the operation of slave loop when master loop instructs a temporary value of fuel.

Г

Chapter 15 Troubleshooting

The chapter describes types of potential errors that occur while operating the system, causes of errors, how to detect them and corrective measures.

15.1 Basic Troubleshooting Procedure

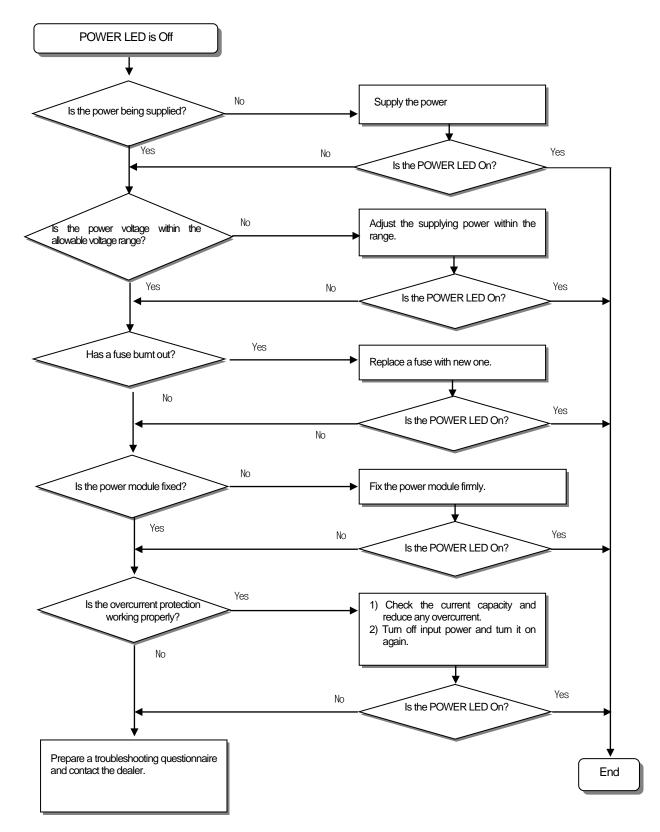
To improve the reliability of a system, it is important to take a corrective measure promptly if a trouble occurs as well as to use highly reliable devices. To operate a system immediately, it is the most important to quickly detect potential causes of a trouble and take corrective measures. To troubleshoot the system correctly, make sure to take the following cautions and procedures.

- (1) Check by visual inspection
 - Please check the followings visually.
 - Operation status(Stop, Run)
 - Power On/Off status
 - I/O device status
 - Wiring status(I/O wiring, expansion and communication cable)
 - Check the status of each display(POWER LED, RUN/STOP LED, I/O LED and etc), connect to peripherals and check the operation condition and program
 - (2) Check any abnormality
 - Please observe how a fault changes by executing the followings.
 - Move the key switch to STOP and turn it On/Off
 - (3) Restricting Range

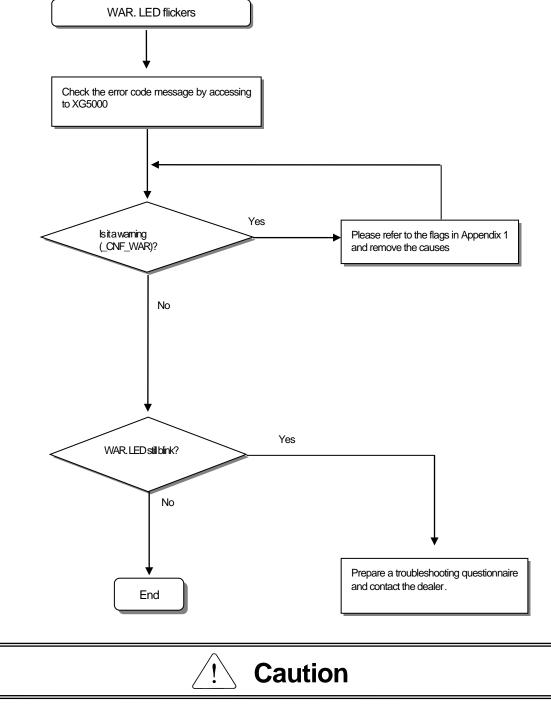
Estimate by which factor a fault occurs by the following methods.

- Is it from the PLC or external factor?
- I/O module or others?
- PLC program?

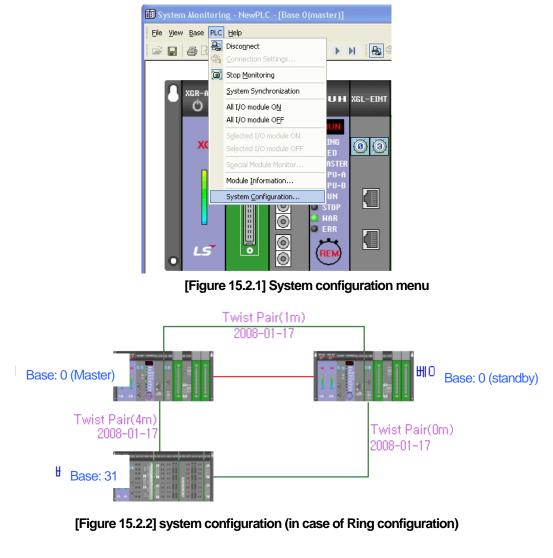
15.2 Troubleshooting

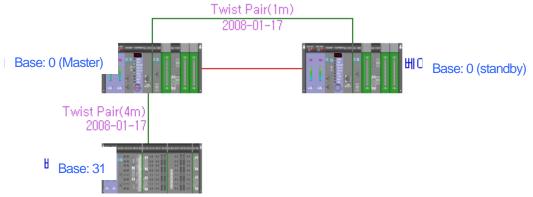

ſ

The above stated detection methods, description for error codes and measures are explained by phenomenon.


15.2.1 Action when POWER LED is off

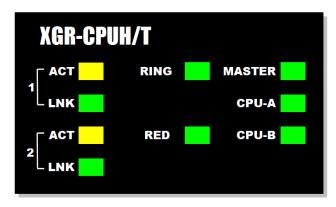
The paragraph describes the orders of taking a measure if POWER LED is Off when turning it on or during operation.

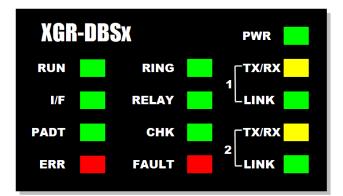

15.2.2 Action when WAR. (Warning) LED is on.


The paragraph describes the orders of taking a measure if WAR.. LED is On when turning it on, starting operation or operating.

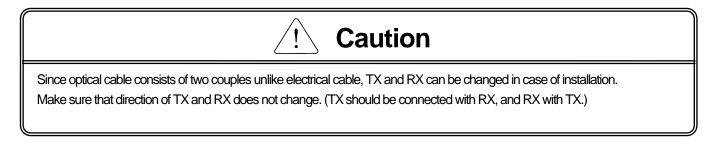
If warning error occurs, the PLC system does not stop but it is necessary to check the error message and take a corrective measure. Or it may cause an error.

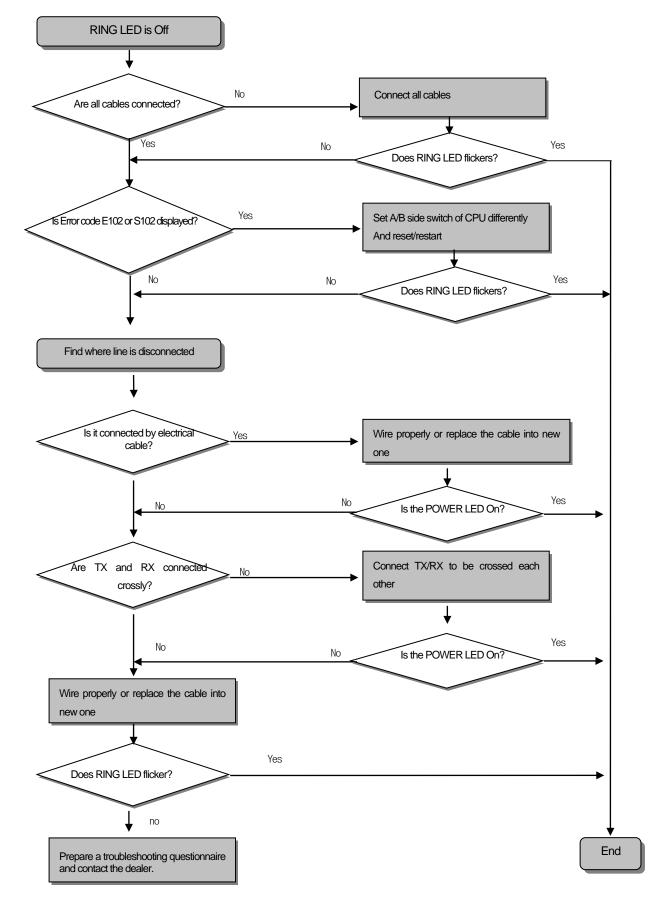
It describes measure when WAR LED is on because redundant system runs in single or configured b Line mode. Connecti XG5000 and execitue [Monitor]-[System Monitor] and select [PLC]-[System Configuration] to check.

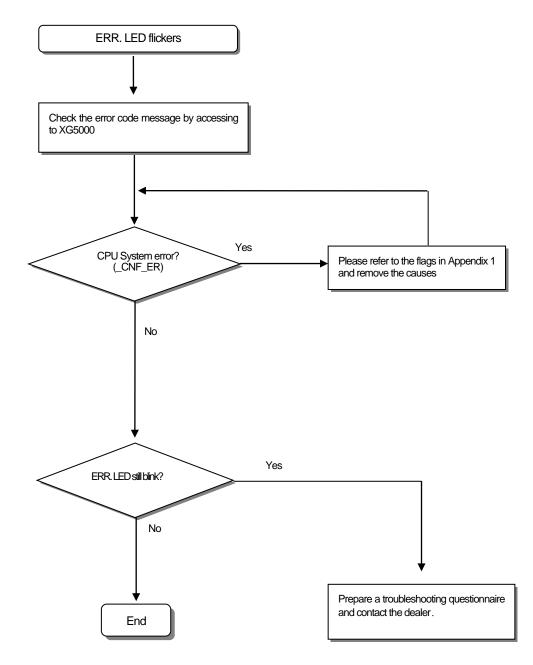



In case system is configured as ring, basic base and expansion base is displayed by ring like [Figure 14.2.2]. In case system is configured as line, disconnection between bases is displayed like [Figure 14.2.3]. This can be checked by LED. In case system starts with line topology, RING LED turns off. In case it starts with ring topology and it changes the topology to line,

RING LED flickers


Γ



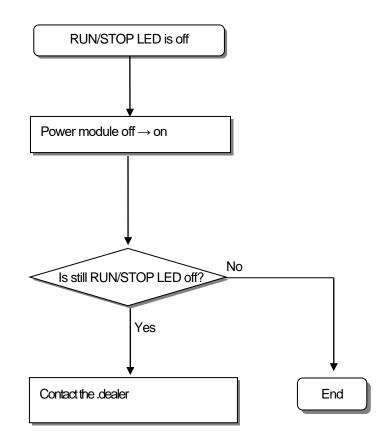


The paragraph describes the orders of taking a measure if RING LED is off or flickers when turning it on, starting operation or operating.

ſ

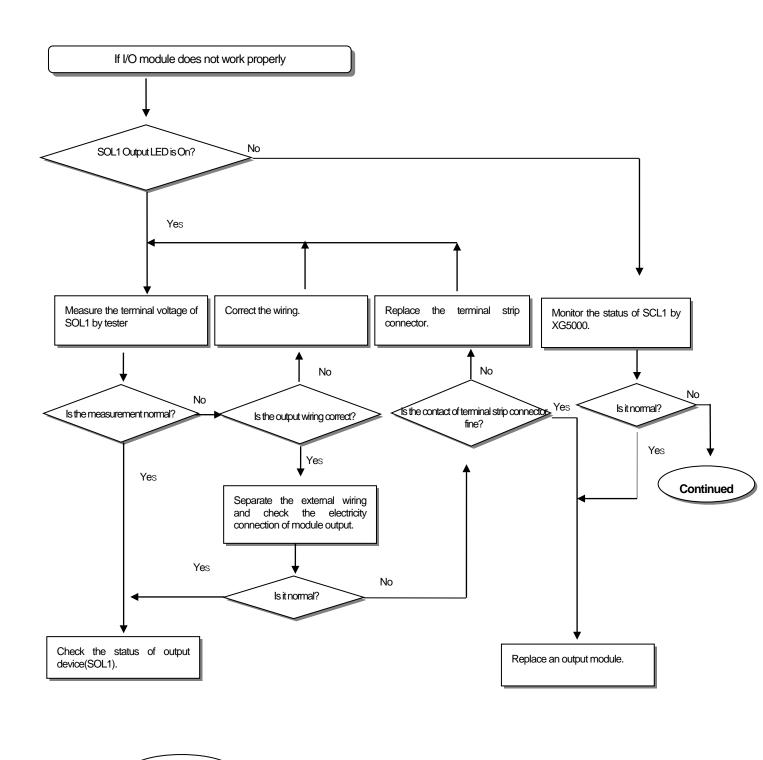
15.2.3 Action when ERR. LED is on

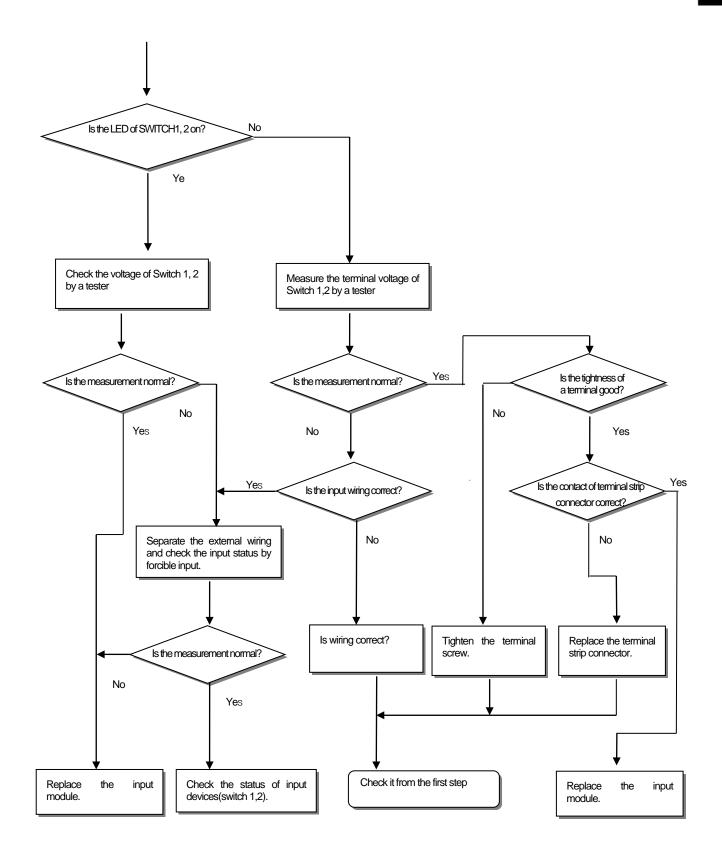
The paragraph describes the orders of taking a measure if ERR. LED flickers when turning PLC on or starting operation



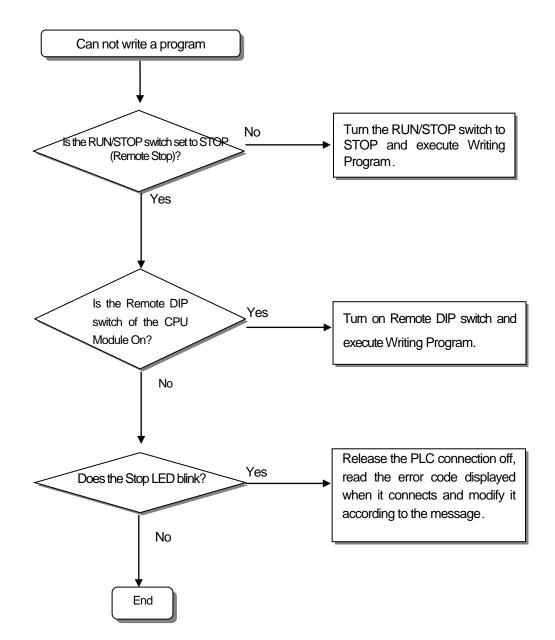
15.2.4 Action when RUN/STOP LED is off

Г


The paragraph describes the orders of taking a measure if RUN/STOP LED is Off when turning it on, starting operation or operating.

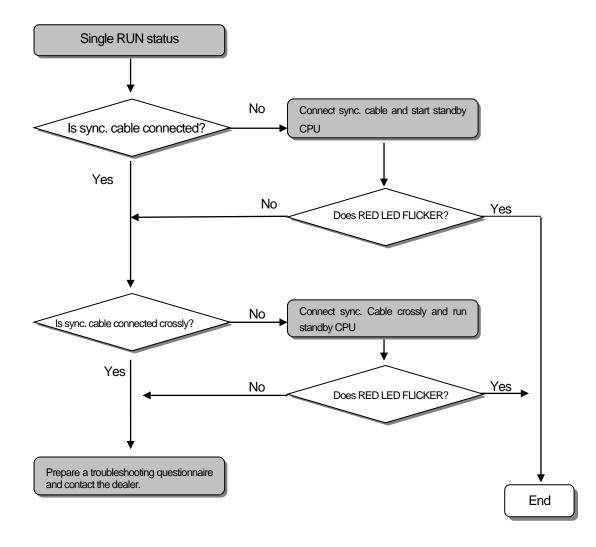

15.2.5 Acton when I/O module does not work properly

For the orders of taking measures when I/O module does not properly work during operation, the paragraph explains it with the following illustration.

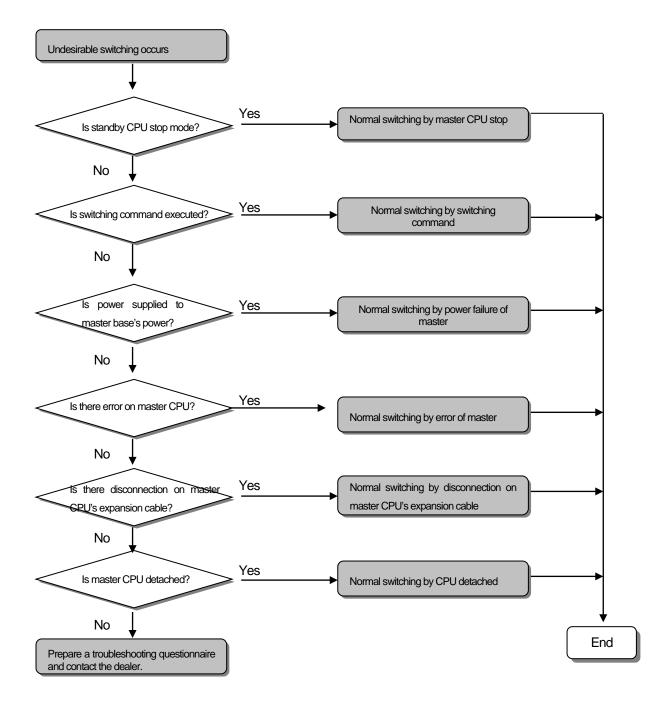

15-11 | LSELECTRE

Г

15.2.6 Action when writing program is not possible

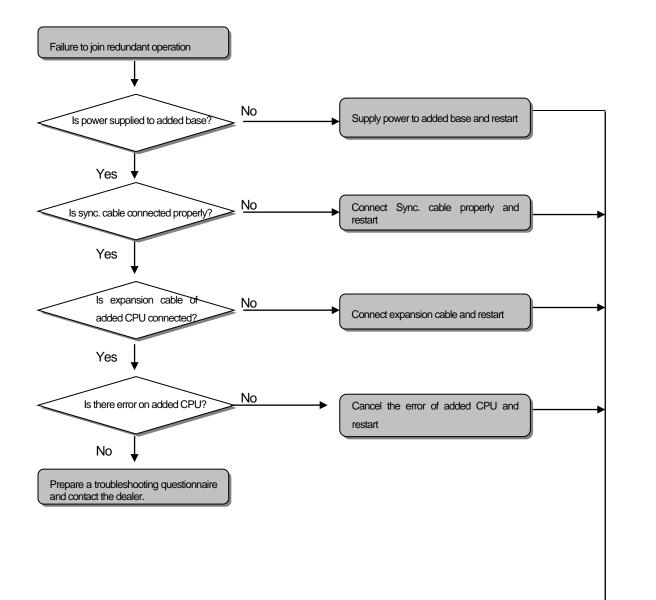

It describes the orders of taking a measure when writing a program into the CPU Module is not possible.

15.2.7 Action when Sync. cable is not installed properly


ſ

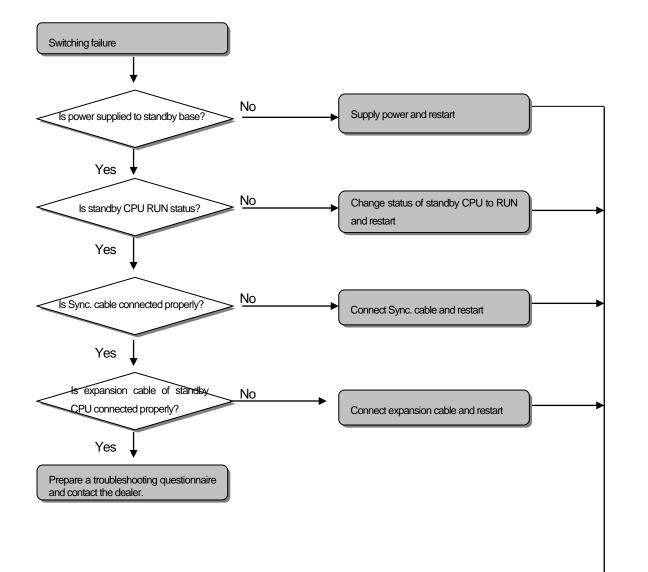
If there is a problem in Sync. Cable, redundant operation is not possible. It describes action when Sync. Cable is not installed properly.

15.2.8 When undesirable master switching occurs


In case switching occurs, it is displayed by MASTER LED at front part. If the revelent is acting as master, MASTER LED is on and if it is acting as standby CPU, MASTER LED off. It switching the user does not want occurs, see the following steps.

15.2.9 When newly added CPU does not join redundant operation

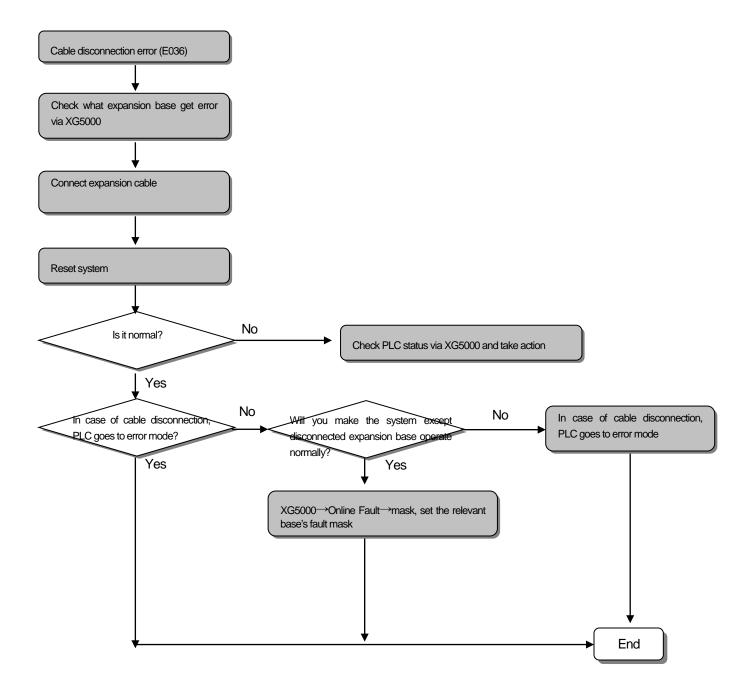
In case of adding new CPU to the previous system, it should act as standby CPU if normal.Before starting, check the Sync. Cable and expansion cable. To join reduntdunt operation, version of new CPU should be same with previous CPU. If not, error occurs because of version. Contact near dealer and get update of new OS.


If you have a problem when adding new CPU, see the following steps.

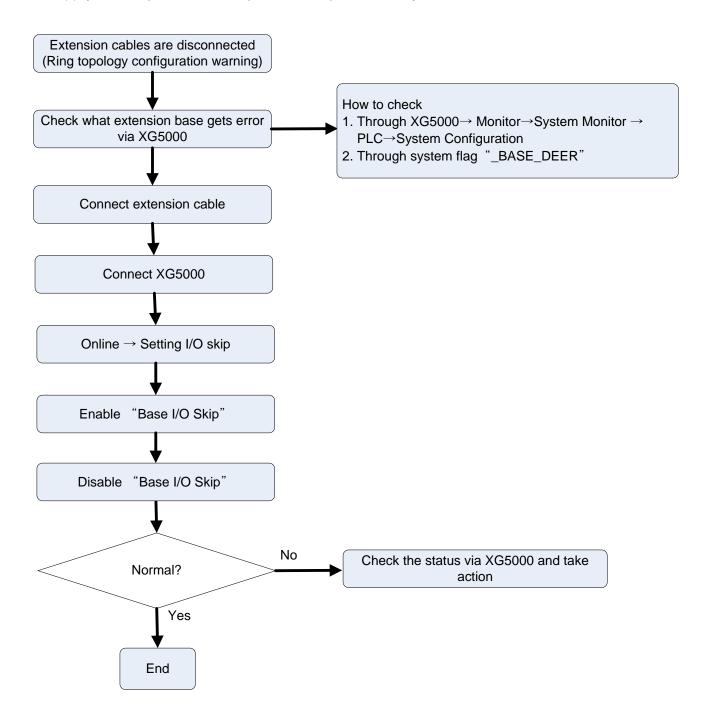
15.2.10 When failing to switch master

If system is not redunduncy status, switching may fail. Before switching, check the redundant ring configuration, RUN status of master/standby CPU, connection status of Sync. Cable.

In case you try to switch but fail, see the following steps.

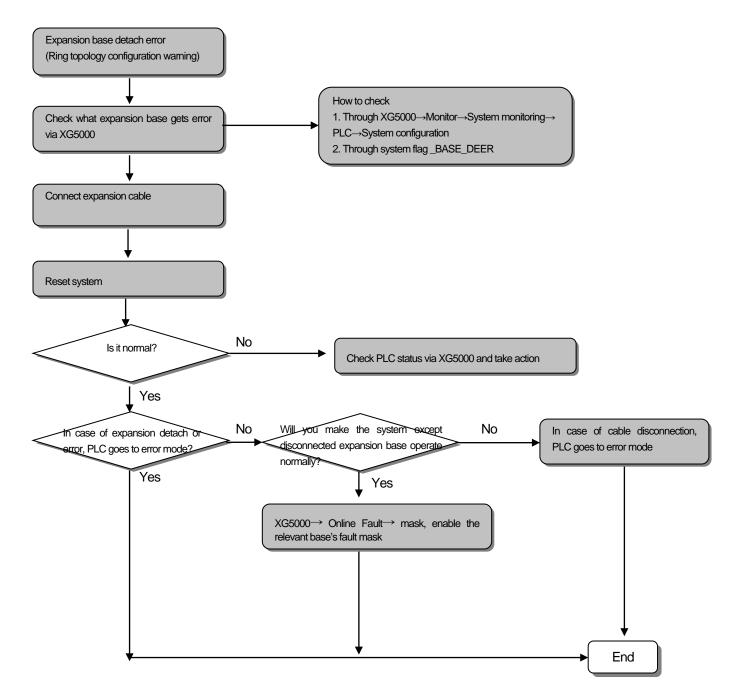


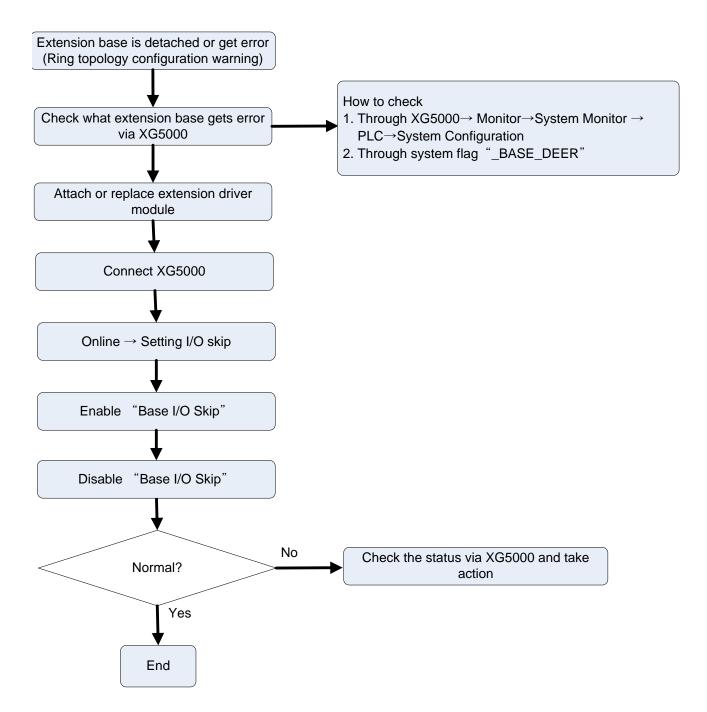
End


15.2.11 When expansion cable is disconnected

In case two expansion cables are disconnected, cable disconnection error occurs or system except disconnected expansion base operates normally.

- Cable disconnection error(E036) : In case fault mask is not set→


(2) system except disconnected expansion base operates normally: in case fault mask is set


15.2.12 When expansion driver gets error

In case expansion driver is detached (or get error), cable disconnection error occurs or system except disconnected expansion base operates normally.

(1) Expansion base detach error (E036) : In case fault mask is not set

(2) system except detached expansion base operates normally: in case of enabling fault mask

15.3 Troubleshooting Questionnaires

Γ

If any trouble is found while using the XGI series, please fill out the form and call to fax it to us.

• For an error relating to special/communication modules, fill out the questionnaires attached in the user's manual of the product.

1. Customer's Contact Number:	TEL)
	FAX)
2. Model :	()
3. Details of the Product	
– Details of the CPU module :	- OS version (), - Product's serial number ()
– XG5000 Version number used for	program compiling : ()
4. Brief description of a device and system	n:
5. Modules using the CPU module :	
– Operation by key switch (), – Operation by XG5000 or Communication ()
– Memory module operation ()
6. STOP LED On of the CPU module?	Yes(), No()
7. Error message generated from the XG	5000 :
8. Measures taken against the error code	in the above 7:
9. Other troubleshooting measures again	st the error :
10. Features of the error	
• Reiterative(): Periodic(), Relating to a specific sequence level()
Relating to the environment()
• Intermittent(): Approx. interva	al of the error occurrence :
11. Detail description for the erroneous ph	nenomena:

12. Configuration of the applied system :

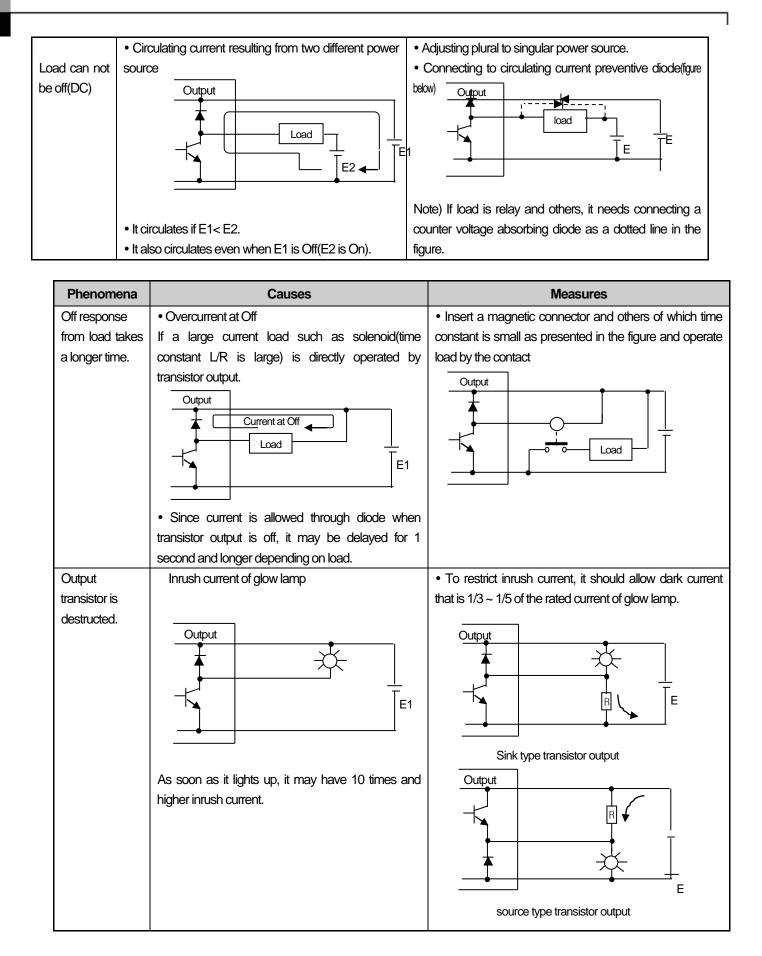
15.4 Cases

It describes trouble types and measures for circuits.

15.4.1 Trouble types and measures of input circuit

The followings describe the examples and measures of troubles.

Phenomena	Causes	Measures
	Leakage current of an external device	Connect a proper resistance or capacitor so that
Input signal can	(if operating by proximate switch and others)	the voltage between terminals of input module is
not be off	AC input	below the return voltage.
	Leakage current of an external device(operation by	
Input signal can not be off(neon lamp could be still on)	a limit switch with neon lamp)	 CR value is determined by the value of leakage current. Recommended value C: 0.1 ~ 0.47uF R: 47 ~ 120 Ω (1/2W) Or, separate a circuit completely and install another display circuit.
	leakage current from the capacity between wires of	• Install the power on an external device as
Input signal can	wiring cable	presented below.
not be off	AC input	Exte <u>rnal device</u>
	Leakage current of an external device(operation by	Connect a proper resistance so that the voltage
Input signal can not be off	a switch with LED mark)	between input module terminal and common terminal is higher than off voltage as presented below.
	• Circulating current by using plural different power	Change plural to singular power
Input signal can	sources	· Connecting to a circulating current preventive
not be off	• If E1 > E2, it circulates.	diode(figure below)


1

15.4.2 Trouble types and measures of output circuit

The followings describe the examples and measures of troubles.

Γ

Phenomena	Causes	Measures
Excessive voltage is allowed to load when output contact is off	 If load contains half-wave rectification(solenoid valve may have it) If the polarity is ←, C is charged while the voltage + power voltage charged to C is allowed to both ends of diode(D). when the polarity is ↑. The max. voltage is approx. 2√2. 	 Connect a dozens ~ several hundreds kΩ resistor to a load in parallel.
Load can not be off	trouble. Leakage current from surge absorbing circuit connected to an output element in parallel Output C Leakage current	• Connect a dozens of $k\Omega$ resistor or CR of which impedance is equal to the resistance to load in parallel. Note) If the length of wiring from output module to load is long, it may have leakage current from capacity of cables.
Abnormal time when load is a C-R type timer	Leakage current from surge absorbing circuit connected to an output element in parallel.	Operate the C-R type timer by mediating a relay. Use other one but a C-R type timer. Note) A timer's internal circuit may have half-wave rectification

15.5 Error Codes List

Γ

15.5.1 Error codes during CPU operation

Code	Error causes	Measures	Operation status	LED status	Diagnostic timing
13	Abnormal base information	Contact A/S service if it still exists after turning it on again	STOP	S013	Turning it on Converting to RUN mode
23	If a program to execute is not normal	Operate after downloading program again (Cold) Replace a battery in case of abnormal battery (Cold) After a program is reloaded, check the storage condition and if any fault is found, replace the CPU module. (Cold)	STOP	E023	Converting to RUN mode
24	Abnormal I/O parameter	Check I/O parameter and the installed module Set I/O parameter to be same with installed module and download	STOP	E024	Converting to RUN mode
25	Abnormal basic parameter	Restart after basic parameter is reloaded Replace a battery in case of defective battery After basic parameter is reloaded, check the storage condition and if any fault is found, replace the CPU module.	STOP	E025	Converting to RUN mode
28	Abnormal Redundancy parameter	Start after loading redundancy parameter again (Doesn't check in case of downloading during Run)	STOP	E028	Turning it on, Loading program
29	Abnormal special parameter	Start after loading special parameter again (Doesn't check in case of downloading during Run)	STOP	E029	Turning it on, Loading program
30	The module set in parameter and the actually installed module do not coincide	Check the wrong slot position by XG5000, modify a module or parameter and then, restart. Reference flag: module type inconsistence error flag (_IO_TYER, _IO_TYER_N, _IO_TYERR[n])	stop, Run	E030	Turning it on, Loading program Converting to RUN mode
31	Module detachment or module addition during operation	Check any detached/added slot position by XG5000, modify the installment and restart (according to parameter) Reference flag: module detachment error flag (_IO_DEER,_IO_DEER_N,_IO_DEERR[n])	stop, Run	E031	scan ends
32	Fuse of a module holding a fuse is burnt out during operation	Check the position of a slot of which fuse is burnt out by XG5000, replace a fuse and restart (according to parameter) Reference flag: fuse disconnection error flag (_FUSE_ER,_FUSE_ER_N,_FUSE_ERR[n])	stop, Run	E032	scan ends

Chapter 15. Troubleshooting

Code	Error causes	Measures(restart mode after the measure)	Operation status	LED status	Diagnostic timing
36	Expansion base detach error	Check the detachment of expansion base	STOP, RUN	E036	turning it on, Scan end, Executing program
39	CPU abnormal end or trouble	Contact A/S service if it still exists after turning it on again	-	E039	turning it on, Scan end, Executing program
40	The scan time of a program exceeds the scan delay watchdog time designated by parameter during operation	Check the scan delay watchdog time designated by parameter, modify parameter or program and restart (cold)	STOP	E040	Executing program
41	Program execution code error	Download program again and restart	STOP	E041	turning it on,
43	Duplicated base number	Check the duplicated base number	STOP	E043	Executing program
45	Base power error	Two power module are off Check attachment of power module	STOP RUN	E045	turning it on,
48	Module position error	Module that can't be installed has bee installed For more detail, refer to error history	STOP RUN	E048	turning it on, Loading program Switching to RUN mode
50	Error of external device is detected by a user program during operation	Repair a fault device by referring to error detection flag of external device and restart(according to parameter) (_ANNUN_ER,_ANC_ERR[n])	stop Run	E050	When scan ends
101	CPU position error	CPU is installed at wrong position Position CPU correctly	STOP	S101	turning it on,
102	Duplicated CPU ID error	Set the A/B side switches of Master CPU and Standby CPU differently	STOP	S102	turning it on,
103	Base abnormal error	Configure expansion cable as Ring Topology and position detached base correctly. For information of detached base, refer to CPU error log	stop, Run	E103	Executing program
104	System configuration error	 Check redundancy configuration Check redundancy drive module station no. Check O/S version of extension drive module and extension manager 	STOP	E104	turning it on, Scan end
300	Redundancy system synchronous operating error	During redundancy operating, synchronization error occurs	STOP	E300	Switching to redundancy operation, operating

Code	Error causes	Measures(restart mode after the measure)	Operation status	LED status	Diagnostic timing
		Restart as redundancy operation			
		 set operation mode of standby CPU as STOP 			
	Standby CPU failed to	 Cancel the error of master CPU and restart 			
301	operate as redundancy	 Change standby CPU into RUN 	STOP	E301	Starting standby
001	because of error of Master CPU	Restart standby CPU as single operation	0101		operation
		Disable master CPU (STOP mode or power cut)			
		 restart standby CPU through reset switch or changing operation mode from STOP to RUN 			
504	RTC data error	If there is no error in battery, reset RTC data via		E501	turning it on,
501		XG5000	RUN		scan end
502		Perios better utile pourrie on		E502	turning it on,
502	Low battery voltage	Replace battery while power in on	RUN		scan end
bw	Expansion base error	Check the power of expansion base	RUN	Ebxx	Operating
bxx	Expansion base error	Check the expansion cable	RUN		Operating

Note

Γ

(1) Error No. 2 through 13 from "Error Codes during CPU Operation" can be checked in our A/S Service Center.

(2) The other errors of which number is 22 and lower can be checked by using the error log of XG5000.

Appendix 1 Flag list

Appendix 1.1 User Flag

1. User flag

Address	Flag name	Туре	Writable	Contents	Description	
%FX6144	_T20MS	BOOL	-	20ms cycle clock	Clock signal used in user program reverses On/Off per a half cycle	
%FX6145	_T100MS	BOOL	-	100ms cycle clock	Please use more enough long clock signal than PLC scan time.	
%FX6146	_T200MS	BOOL	-	200ms cycle clock	Clock signal starts from Off condition when initialization program starts or scan program starts.	
%FX6147	_T1S	BOOL	-	1s cycle clock	_T100ms clock example	
%FX6148	_T2S	BOOL	-	2s cycle clock	50ms 50ms	
%FX6149	_T10S	BOOL	-	10s cycle clock		
%FX6150	_T20S	BOOL	-	20s cycle clock		
%FX6151	_T60S	BOOL	-	60s cycle clock		
%FX6153	_ON	BOOL	-	Ordinary time On	Always On state flag, used when writing user program.	
%FX6154	_OFF	BOOL	-	Ordinary time Off	Always Off state flag, used when writing user program.	
%FX6155	_10N	BOOL	-	1'st scan On	Only 1'st scan On after operation start	
%FX6156	_10FF	BOOL	-	1'st scan Off	Only 1'st scan Off after operation start	
%FX6157	_STOG	BOOL	-	Reversal every scan (scan toggle)	On/Off reversed flag per every scan when user program is working. (On state for first scan)	
%FX6163	_ALL_OFF	BOOL	-	All output Off	On in case all outputs are off	
%FX30720	_RTC_WR	BOOL	Available	Writing data to RTC	Write data to RTC and Read	
%FX30721	_SCAN_WR	BOOL	Available	Initialize scan value	Initialize scan value	
%FX30722	_CHK_ANC_ERR	BOOL	Available	Request for detecting heavy fault of external device	Flag that requests detecting heavy fault of external	
%FX30723	_CHK_ANC_WAR	BOOL	Available	Request for detecting light fault of external device	^{ult} Flag that requests detecting light fault (warning) of external	
%FX30724	_MASTER_CHG	BOOL	Available	Master/Standby switching	Flag used when switching master/standby	
%FW3860	_RTC_TIME_USER	ARRAY[07] OF BYTE	Available	Time to set	Flag for user to set time (year, month, hour, minute, second, day, century available)	

Appendix 1.2 System Error Representative Flag

Γ

1. Master CPU system error representative flag

Address	Flag name	Туре	Bit position	Contents	Description
%FD65	_CNF_ER	DWOR D	Represent ative flag	System error (heavy fault error)	Handles error flags about non-operation fault error as below.
%FX2081	_IO_TYER	BOOL	BIT 1	Error when Module type mismatched	Representative flag displayed when I/O configuration parameter for each slot is not matched with practical module configuration or a specific module is applied in the wrong location.
%FX2082	_IO_DEER	BOOL	BIT 2	Module detachment error	(Refer to "_IO_TYER_N, _IO_TYER[n]") Representative flag displayed when the module configuration for each slot is changed while running. (Refer to "_IO_DEER_N, _IO_DEER[n]")
%FX2083	_FUSE_ER	BOOL	BIT 3	Fuse cutoff error	Representative flag displayed when the fuse of module is cut off. (Refer to "_FUSE_ER_N, _FUSE_ER[n]")
%FX2086	_ANNUM_ER	BOOL	BIT 6	Heavy fault detection error in external device	Representative flag displayed when heavy fault error detected by user program is recorded in "_ANC_ERR[n]".
%FX2088	_BPRM_ER	BOOL	BIT 8	Basic parameter error	Basic parameter doesn't match CPU type.
%FX2089	_IOPRM_ER	BOOL	BIT 9	I/O parameter error	It is abnormal to the I/O configuration parameter.
%FX2090	_SPPRM_ER	BOOL	BIT 10	Special module parameter error	It is abnormal to the special module parameter.
%FX2091	_CPPRM_ER	BOOL	BIT 11	Communication module parameter error	It is abnormal to the communication module parameter.
%FX2092	_PGM_ER	BOOL	BIT 12	Program error	Indicates that there is problem with user-made program.
%FX2093	_CODE_ER	BOOL	BIT 13	Program code error	Indicates that while user program is running, the program code can't be interpreted.
%FX2094	_SWDT_ER	BOOL	BIT 14	CPU abnormal ends.	Displayed when the saved program gets damages by an abnormal end of CPU or program cannot work.
%FX2095	_BASE_POWE R_ER	BOOL	BIT 15	Abnormal base power	Base power off or power module error
%FX2096	_WDT_ER	BOOL	BIT 16	Scan watchdog error	Indicates that the program scan time exceeds the scan watchdog time specified by a parameter.
%FX2097	_BASE_INFO_E R	BOOL	BIT 17	Base information error	Base information is abnormal
%FX2102	_BASE_DEER	BOOL	BIT 22	Extension base detachment error	Extension base is detatched
%FX2103	_DUPL_PRM_E R	BOOL	BIT 23	Redundant parameter error	Abnormal Redundant parameter
%FX2104	_INSTALL_ER	BOOL	BIT 24	Module attachment position error	The module which can't be inserted into main base is inserted in to main base or The module which can't be inserted into extension base is inserted in to extension base

Appendix 1. Flag List

Address	Flag name	Туре	Bit position	Contents	Description
%FX2105	_BASE_ID_ER	BOOL	BIT 25	Overlapped extension base number	extension base number is overlapped
%FX2106	_DUPL_SYNC_ ER	BOOL	BIT 26	Redundant operation Sync. error	Synchronization between master and standby CPU is abnormal
%FX2107	_AB_SIDEKEY_ ER	BOOL	BIT 27	A/B SIDE key overlap error	A,B side key of master, standby CPU are overlapped. They should be different.
%FX2110	_BASE_AB_ER	BOOL	BIT 30	Base abnormal configuration	Configure extension cable as Ring Topology and position detached base correctly. For information of detached base, refer to CPU error log
%FX2111	_SYS_CON_ER	BOOL	BIT 31	System configuration error	Abnormal system configuration Ex) - Master/Standby One ring or line configuration - Duplicated station number of extension base or Station number more than specification - Different station number in same base

2. Standby CPU System error representative flag

Γ

Address	Flag name	Туре	Bit position	Contents	Description
%FD129	_SB_CNF_ER	DWOR D	Represent ative flag	System error (heavy fault error)	Handles error flags about non-operation fault error as below.
%FX4129	_SB_IO_TYER	BOOL	BIT 1	Module type mismatch error	Attached module is different with I/O parameter or some module which can't be inserted into some slot is inserted some slot. Representative flag that detects them and displays (refer to _SB_IO_TYER_N, _SB_IO_TYERR)
%FX4130	_SB_IO_DEER	BOOL	BIT 2	Module detachment error	Representative flag displayed when the module configuration for each slot is changed while running. (refer to _SB_IO_DEER_N,_SB_IO_DEERR]
%FX4131	_SB_FUSE_ER	BOOL	BIT 3	Fuse cutoff error	Representative flag displayed when the fuse of module is cut off.
%FX4134	_SB_ANNUM_ER	BOOL	BIT 6	Heavy fault detection error in external device	Representative flag displayed when heavy fault error detected by user program is recorded in "_ANC_ERR[n]".
%FX4136	_SB_BPRM_ER	BOOL	BIT 8	Basic parameter error	Basic parameter doesn't match CPU type.
%FX4137	_SB_IOPRM_ER	BOOL	BIT 9	I/O parameter error	It is abnormal to the I/O configuration parameter
%FX4138	_SB_SPPRM_ER	BOOL	BIT 10	Special module parameter error	It is abnormal to the special module parameter.
%FX4139	_SB_CPPRM_ER	BOOL	BIT 11	Communication module parameter error	It is abnormal to the communication module parameter.
%FX4141	_SB_CODE_ER	BOOL	BIT 13	Program code error	Indicates that while user program is running, the program code can't be interpreted.
%FX4142	_SB_SWDT_ER	BOOL	BIT 14	CPU abnormal ends.	Displayed when the saved program gets damages by an abnormal end of CPU or program cannot work.
%FX4143	_SB_BASE_POW ER_ER	BOOL	BIT 15	Abnormal base power	Base power off or power module error
%FX4144	_SB_WDT_ER	BOOL	BIT 16	Scan watchdog error	Indicates that the program scan time exceeds the scan watchdog time specified by a parameter.
%FX4145	_SB_BASE_INFO _ER	BOOL	BIT 17	Base information error	Base information is abnormal
%FX4150	_SB_BASE_DEE R	BOOL	BIT 22	Extension base detachment error	Extension base is detached.
%FX4151	_SB_DUPL_PRM _ER	BOOL	BIT 23	Abnormal redundant parameter	Redundant parameter is Abnormal
%FX4152	_SB_INSTALL_E R	BOOL	BIT 24	Module attachment position error	The module which can't be inserted into main base is inserted in to main base or The module which can't be inserted into extension base is inserted in to extension base
%FX4153	_SB_BASE_ID_E	BOOL	BIT 25	Overlapped extension	extension base number is overlapped

Appendix 1. Flag List

Address	Flag name	Туре	Bit position	Contents	Description
	R			base number	
%FX4154	_SB_DUPL_SYN C_ER	BOOL	BIT 26	Redundant operation Sync. error	Synchronization between master and standby CPU is abnormal
%FX4156	_SB_CPU_RUN_ ER	BOOL	BIT 28	Standby CPU run error	Standby CPU fails to join redundant operation when MASTER CPU is error
%FX4158	_SB_BASE_AB_E R	BOOL	BIT 30	Base abnormal configuration	Configure extension cable as Ring Topology and position detached base correctly. For information of detached base, refer to CPU error log

Appendix 1.3 System Error Detail Flag

1. Master CPU system error detail flag

Г

Address	Flag name	Туре	Writable	Contents	Description
%FW424	_IO_TYERR	ARRAY[031] OF WORD	-	Module type mismatch error	Indicates slot and base where module mismatch error occurs
%FW456	_IO_DEERR	ARRAY[031] OF WORD	-	Module detachment error	Indicates slot and base where module detachment error occurs
%FW488	_FUSE_ERR	ARRAY[031] OF WORD	-	Fuse cutoff error	Indicates slot and base where fuse cutoff error occurs
%FD83	_BASE_DEERR	DWORD	-	Extension base detachment error	Indicates base where extension base is detached
%FD574	_BASE_POWER _FAIL	DWORD	-	Information of base where power module error occurs	Indicates base where power module error occurs
%FW416	_IO_TYER_N	WORD	-	Module type mismatch slot number	Indicates slot number where module type mismatch error occurs. When two or more occurs, first slot is indicated
%FW417	_IO_DEER_N	WORD	-	Module detachment slot number	Indicates slot number where module detachment error occurs. When two or more occurs, first slot is indicated
%FW418	_FUSE_ER_N	WORD	-	Fuse cutoff slot number	Indicates slot number Fuse cutoff error occurs. When two or more occurs, first slot is indicated
%FW1922	_ANC_ERR	WORD	Available	Heavy fault information of external device	Classifies the type of user defined error and writes value except 0. If detection of heavy fault is requested, it develops an external heavy fault detection error. By monitoring this flag, the user can know a reason of heavy fault.
%FX10849	_IO_ER_PMT	BOOL	-	Status of Ignoring IO module error	On when set to ignore IO module error
%FX10851	_CP_ER_PMT	BOOL	-	Status of Ignoring communication module error	On when set to ignore communication module error
%FX10850	_SP_ER_PMT	BOOL	-	Status of Ignoring special module error	On when set to ignore special module error
%FX10848	_FUSE_ER_PMT	BOOL	-	Status of Ignoring fuse error	On when set to ignore fuse module error

2. Standby CPU	system error	detail flag
----------------	--------------	-------------

Address	Flag name	Туре	Writable	Contents	Description
%FD147	_SB_BASE_DEERR	DWORD	-	Extension base detachment error	Indicates base where extension base is detached
%FW588	_SB_IO_TYERR	WORD	-	Module type mismatch error	Indicates slot and base where module mismatch error occurs
%FW589	_SB_IO_DEERR	WORD	-	Module detachment error	Indicates slot and base where module detachment error occurs

Appendix 1.4 System Warning Representative Flag

Γ

1. MASTER CPU System warning representative flag

Address	Flag name	Туре	Bit position	Contents	Description
%FD66	_CNF_WAR	DWORD	Representative flag	System warning	Representative flag displayed the system warning state
%FX2112	_RTC_ER	BOOL	BIT 0	RTC error	Indicates that RTC data is abnormal
%FX2114	_BASE_EXIST_WAR	BOOL	BIT 2	Not joined base	Warns there is base which doesn't join operation
%FX2115	_AB_SD_ER	BOOL	BIT 3	Stop by operation error	Stopped by abnormal operation
%FX2116	_TASK_ER	BOOL	BIT 4	Task collision	It is collided to the task
%FX2117	_BAT_ER	BOOL	BIT 5	Battery error	It is to the error in the battery state
%FX2118	_ANNUM_WAR	BOOL	BIT 6	External device fault	Indicates that the light fault in the external device is detected.
%FX2120	_HS_WAR	BOOL	BIT 8	High speed link	Abnormal HS parameter
%FX2121	REDUN_WAR	BOOL	BIT 9	Redundant configuration warning	It is not single CPU RUN mode and redundant configuration is not configured
%FX2122	_OS_VER_WAR	BOOL	BIT 10	O/S version mismatch	OS versions between CPUs, extension managers, extension drive modules are different
%FX2123	_RING_WAR	BOOL	BIT 11	Ring topology configuration warning	Configure an extension cable as the Ring topology
%FX2132	_P2P_WAR	BOOL	BIT 20	P2P parameter	Abnormal P2P parameter
%FX2138	_SYS_CON_WAR	BOOL	BIT 26	System configuration warning	Extension redundancy system configuration warning -Master/standby ring changes into line -Master normal but standby error
%FX2140	_CONSTANT_ER	BOOL	BIT 28	Fixed cycle error	Fixed cycle error
%FX2141	_BASE_POWER_WAR	BOOL	BIT 29	Power module error warning	One or two power module is error
%FX2142	_BASE_SKIP_WAR	BOOL	BIT 30	Base skip cancelation warning	In case of canceling the base skip, base is different with IO parameter
%FX2143	_BASE_NUM_OVER_WAR	BOOL	BIT 31	Base number setting error	Base number of extension drive module is not 1~31

2. Standby CPU System	warning representative flag
-----------------------	-----------------------------

Address	Flag name	Туре	Bit position	Contents	Description
%FD130	_SB_CNF_WAR	DWORD	Represent ative flag	System warning	Representative flag displayed the system warning state
%FX4160	_SB_RTC_ER	BOOL	BIT 0	RTC error	Indicates that RTC data is abnormal
%FX4162	_SB_BASE_EXIST_ WAR	BOOL	BIT 2	Not joined base	Warns there is base which doesn't join operation
%FX4163	_SB_AB_SD_ER	BOOL	BIT 3	Stop by operation error	Stopped by abnormal operation
%FX4164	_SB_TASK_ER	BOOL	BIT 4	Task collision	It is collided to the task
%FX4165	_SB_BAT_ER	BOOL	BIT 5	Battery error	It is to the error in the battery state
%FX4166	_SB_ANNUM_WAR	BOOL	BIT 6	External device fault	Indicates that the light fault in the external device is detected.
%FX4168	_SB_HS_WAR	BOOL	BIT 8	High speed link	Abnormal HS parameter
%FX4170	_SB_OS_VER_WAR	BOOL	BIT 10	O/S version mismatch	OS versions between CPUs, extension managers, extension drive modules are different
%FX4171	_SB_RING_WAR	BOOL	BIT 11	Ring topology configuration warning	Configure an extension cable as the Ring topology
%FX4180	_SB_P2P_WAR	BOOL	BIT 20	P2P parameter	Abnormal P2P parameter
%FX4188	_SB_CONSTANT_E R	BOOL	BIT 28	Fixed cycle error	Fixed cycle error
%FX4189	_SB_BASE_POWER _WAR	BOOL	BIT 29	Power module error warning	One or two power module is error
%FX4190	_SB_BASE_SKIP_W AR	BOOL	BIT 30	Base skip cancelation warning	In case of canceling the base skip, base is different with IO parameter
%FX4191	_SB_BASE_NUM_O VER_WAR	BOOL	BIT 31	Base number setting error	Base number of extension drive module is not 1~31

Appendix 1.5 System Warning Detail Flag

1. Master CPU system warning detail flag

Γ

Address	Flag name	Туре	Writab le	Contents	Description
%FX2624	_HS_WARN	ARRAY[011] OF BOOL	-	Abnormal HS parameter	Relevant flag is on in case Hs parameter is abnormal
%FX2640	_P2P_WARN	ARRAY[07] OF BOOL	-	Abnormal P2P parameter	Relevant flag is on in case P2P parameter is abnormal P2P
%FD587	_BASE_ACPF_W AR	DWORD	-	Instantaneous power cutoff occurrence warning information	Indicates base where Instantaneous power cutoff occurs
%FW164	_HS_WAR_W	WORD	-	Abnormal HS parameter	Indicates abnormal HS link number by bit
%FW165	_P2P_WAR_W	WORD	-	Abnormal P2P parameter	Indicates abnormal P2P link number by bit
%FW1923	_ANC_WAR	WORD	-	Light fault information external device	Classifies the type of user defined error and writes value except 0. If detection of heavy fault is requested, it develops an external light fault detection error. By monitoring this flag, the user can know a reason of light fault.
%FW600~ %FW631	_BASE_INFO[0]~ _BASE_INFO[31]	WORD	-	Abnormal base power module	Indicates abnormal redundancy power module Ex) error in left power module on expansion base 1(12slot) – %FW601(_BASE_INFO[1]) 16#010C: 01 → left power module 0C → 12-slot expansion base Ex) error in right power module on expansion base 2(6slot) – %FW602(_BASE_INFO[2]) 16#0206: 02 → right power module 06 → 6-slot expansion base

2. Standby CPU system warning detail flag

Address	Flag name	Туре	Writable	Contents	Description
%FX4672	_SB_HS_WA	ARRAY[011] OF	-	Abnormal HS parameter	Relevant flag is on in case Hs parameter is abnormal
	RN	BOOL			
%FX4688	_SB_P2P_WA RN	ARRAY[07] OF BOOL	-	Abnormal P2P parameter	Relevant flag is on in case P2P parameter is abnormal P2P
%FW292	_SB_HS_WA R_W	WORD	-	Abnormal HS parameter	Indicates abnormal HS link number by bit
%FW293	_SB_P2P_WA R_W	WORD	-	Abnormal P2P parameter	Indicates abnormal P2P link number by bit

Appendix 1.6 System Operation Status Information Flag

1. Master CPU system operation status in	nformation flag
--	-----------------

Address	Flag name	Туре	Bit position	Contents	Description
%FD64	_SYS_STATE	DWORD	Representat ive flag	PLC Mode and operation state	Indicates PLC mode and operation state of system.
%FX2048	_RUN	BOOL	BIT 0	RUN	
%FX2049	_STOP	BOOL	BIT 1	STOP	
%FX2050	_ERROR	BOOL	BIT 2	ERROR	Indicates CPU's operation status
%FX2051	_DEBUG	BOOL	BIT 3	DEBUG	
%FX2052	_LOCAL_CON	BOOL	BIT 4	Local control	Indicates operation mode changeable state only by the Mode key and XG5000.
%FX2054	_REMOTE_CON	BOOL	BIT 6	Remote Mode On	It is Remote control mode
%FX2058	_RUN_EDIT_DON	BOOL	BIT 10	Editing during Run completed	Indicates completion of editing during Run
%FX2059	_RUN_EDIT_NG	BOOL	BIT 11	Editing during Run abnormally completed	Edit is ended abnormally during Run
%FX2060	_CMOD_KEY	BOOL	BIT 12	Operation mode change by key	Indicates Operation mode change by key
%FX2061	_CMOD_LPADT	BOOL	BIT 13	Operation mode change by local PADT	Indicates operation mode change by local PADT
%FX2062	_CMOD_RPADT	BOOL	BIT 14	Operation mode change by remote PADT	Indicates operation mode change by remote PADT
%FX2063	_CMOD_RLINK	BOOL	BIT 15	Operation mode change by remote communication module	Indicates operation mode change by remote communication module
%FX2064	_FORCE_IN	BOOL	BIT 16	Forced Input	Forced On/Off state about input contact
%FX2065	_FORCE_OUT	BOOL	BIT 17	Forced Output	Forced On/Off state about output contact
%FX2066	_SKIP_ON	BOOL	BIT 18	Input/Output Skip	I/O Skip on execution
%FX2067	_EMASK_ON	BOOL	BIT 19	Fault mask	Fault mask on execution
%FX2069	_USTOP_ON	BOOL	BIT 21	Stopped by STOP function	RUN mode operation.
%FX2070	_ESTOP_ON	BOOL	BIT 22	Stopped by ESTOP function	Instantly stopped by 'ESTOP' function while RUN mode operation.
%FW192	_SL_OS_VER	ARRAY[031] OF WORD	-	O/S version of extension drive module	Indicates O/S version of extension drive module
%FW600	_BASE_INFO	ARRAY[031] OF WORD	-	Base information	Indicates how many base is installed
%FB12	_RTC_TIME	ARRAY[07] OF BYTE	-	Current clock	Indicates current clock
%FX2072	_INIT_RUN	BOOL	-	Initialization task on execution	User defined Initialization program on execution.
%FX2074	_AB_SIDE	BOOL	-	CPU position	CPU position (A-SIDE: ON, B-SIDE: OFF)

Address	Flag name	Туре	Bit position	Contents	Description
%FX2076	_PB1	BOOL	-	Program Code 1	Program code 1 is selected
%FX2077	 PB2	BOOL	-	Program Code 2	Program code 1 is selected
%FX30736	_INIT_DONE	BOOL	writable	Initialization task execution completion	If this flag is set by user's initial program, it is started to execution of scan program after initial program completion.
%FW584	_RTC_DATE	DATE	-	RTC's current date	Indicates RTC's current date
%FD67	_OS_VER	DWORD	-	O/S version	Indicates CPU O/S version
%FD68	_OS_DATE	DWORD	-	O/S data	Indicates CPU O/S data
%FD69	_CP_OS_VER	DWORD	-	Extension manager O/S version	Indicates extension manager O/S version
%FD573	_OS_TYPE	DWORD	-	For PLC classification	Whether it is provided to other division
%FW1081	_FALS_NUM	INT	-	FALS number	Indicates FALS number
%FD293	_RTC_TOD	TIME_OF_DA Y	-	RTC's current clock	Indicates RTC's current clock RTC. (ms unit)
%FD582	_RUN_EDIT_CNT	UDINT	-	The no. of editing during Run	Indicates the no. of editing during Run
%FW140	_AC_F_CNT	UINT	-	The no. of instantaneous power cutoff	Indicates the no. of instantaneous power cutoff
%FW158	_POWER_OFF_C NT	UINT	-	The no. of power cutoff	Indicates the no. of power cutoff
%FW386	_SCAN_MAX	UINT	writable	Max. scan time	Indicates max. scan time after(unit: 0.1ms)
%FW387	_SCAN_MIN	UINT	writable	Min. scan time	Indicates min. scan time after Run
%FW388	_SCAN_CUR	UINT	writable	Current scan time	Indicates current scan time (unit 0.1ms)
%FW585	_RTC_WEEK	UINT	-	RTC's current day	Indicates RTC's current day
%FW141	_CPU_TYPE	WORD	-	CPU ID (XGR - 0xA801)	Indicates CPU type
%FW633	_RBANK_NUM	WORD	-	Currently used block no.	Indicates currently used block no.
%FD125	_BASE_SKIP_INF	DWORD	-	Base skip information	Indicates base skip information
%FD124	_BASE_EMASK_I NFO	DWORD	-	Base fault mask information	Indicates base fault mask information
%FW1372	_SLOT_EMASK_I NFO	ARRAY[031] OF WORD	-	Slot fault mask information	Indicates slot fault mask information
%FW1404	_SLOT_SKIP_INF	ARRAY[031] OF WORD	-	Slot skip information	Indicates slot skip information
%FW1752	_CYCLE_TASK_SC AN_TIME	ARRAY[031, 02] OF WORD	-	Fixed cycle task scan time	Indicates max./min./current scan time of fixed cycle task
%FX19040	_HS_ENABLE_STAT E	ARRAY[011] OF BOOL	-	-	HS link enable/disable current state

Г

Appendix 1. Flag List

Address	Flag name	Туре	Bit position	Contents	Description
%FX31520	_HS_REQ	ARRAY[011] OF BOOL	-	-	HS link enable/disable request
%FX31536	_HS_REQ_NUM	ARRAY[011] OF BOOL	-	-	HS link enable/disable setting
%FX19072	_P2P_ENABLE_STA TE	ARRAY[07] OF BOOL	-	-	P2P enable/disable current state
%FX31552	_P2P_REQ	ARRAY[07] OF BOOL	-	-	P2P enable/disable request
%FX31568	_P2P_REQ_NUM	ARRAY[07] OF BOOL	-	-	P2P enable/disable setting
%FW1436	_SOE_LOG_CNT	WORD	-	-	No. of SOE event
%FW1437	_SOE_LOG_ROTAT E	WORD	-	-	SOE event rotation information
%FW1456	_SOE_READ_LOG_ CNT	WORD	-	-	No. of SOE event read by user
%FW1457	_SOE_READ_LOG_ ROTATE	WORD	-	-	Rotation information of SOE event read by user
%FX2111	_SYS_CON_ER	BOOL	-	-	System configuration error
%FX2138	_SYS_CON_WAR	BOOL	-	-	System configuration warning
%FX2137	_REF_WAR	BOOL	-	-	PLC CPU refresh error warning
%FX30729	_REF_WAR_CLR	BOOL	-	-	PLC CPU refresh error warning clear
%FD197	_REF_NG_CNT	DWORD	-	-	PLC CPU refresh NG counter
%FD196	_REF_OK_CNT	DWORD	-	-	PLC CPU refresh OK counter
%FD753	_REFRESH_NG_BA SE	DWORD	-	REFRESH NG BASE	Indicates the bit map type. ex) Extension Base No. 2 : 16#00000004 (This occurs when there are no three consecutive responses to the extension base.)

2. Standby CPU system operation status information flag

Γ

Address	Flag name	Туре	Bit position	Contents	Description
%FD128	_SB_SYS_STATE	DWOR D	Represent ative flag	System information	Handles system information
%FX4096	_SB_RUN	BOOL	BIT 0	RUN	
%FX4097	_SB_STOP	BOOL	BIT 1	STOP	Indicates CPU's operation status
%FX4098	_SB_ERROR	BOOL	BIT 2	ERROR	
%FX4100	_SB_LOCAL_CON	BOOL	BIT 4	Local control	Local control mode
%FX4102	_SB_REMOTE_CO	BOOL	BIT 6	Remote mode On	Remote control mode
%FX4106	_SB_RUN_EDIT_D	BOOL	BIT 10	Editing during Run completed	Indicates completion of editing during Run
%FX4107	_SB_RUN_EDIT_N G	BOOL	BIT 11	Editing during Run abnormally completed	Edit is ended abnormally during Run
%FX4108	_SB_CMOD_KEY	BOOL	BIT 12	Operation mode change by key	Indicates Operation mode change by key
%FX4109	_SB_CMOD_LPAD T	BOOL	BIT 13	Operation mode change by local PADT	Indicates operation mode change by local PADT
%FX4110	_SB_CMOD_RPAD T	BOOL	BIT 14	Operation mode change by remote PADT	Indicates operation mode change by remote PADT
%FX4111	_SB_CMOD_RLINK	BOOL	BIT 15	Operation mode change by remote communication module	Indicates operation mode change by remote communication module
%FX4112	_SB_FORCE_IN	BOOL	BIT 16	Forced Input	Forced On/Off state about input contact
%FX4113	_SB_FORCE_OUT	BOOL	BIT 17	Forced Output	Forced On/Off state about output contact
%FX4114	_SB_SKIP_ON	BOOL	BIT 18	Input/Output Skip	I/O Skip on execution
%FX4115	_SB_EMASK_ON	BOOL	BIT 19	Fault mask	Fault mask on execution
%FX4117	_SB_USTOP_ON	BOOL	-	Stopped by STOP function	Stopped after scan completion by 'STOP' function while RUN mode operation.
%FX4118	_SB_ESTOP_ON	BOOL	-	Stopped by ESTOP function	Instantly stopped by 'ESTOP' function while RUN mode operation.
%FD131	_SB_OS_VER	DWOR D	-	O/S version	Indicates CPU O/S version
%FD132	_SB_OS_DATE	DWOR D	-	O/S data	Indicates CPU O/S data
%FD133	_SB_CP_OS_VER	DWOR D	-	O/S version of extension drive module	Indicates O/S version of extension drive module
%FW286	_SB_POWER_OFF	UINT	-	The no. of power cutoff	Indicates the no. of power cutoff

Appendix 1. Flag List

Address	Flag name	Туре	Bit position	Contents	Description
	_CNT				
%FW269	_SB_CPU_TYPE	WORD	-	CPU ID (XGR - 0xA801)	Indicates CPU type
%FW632	_SB_BASE_INFO	WORD	-	Base information	Indicates how many base is installed.

Appendix 1.7 Redundant Operation Mode Information Flag

Addrooo		Turne	Dit position	Contonto	Description
Address	Flag name	Туре	Bit position	Contents	Description
%FD0	_REDUN_STATE	DWOR	Represent ative flag	Redundant operation	Representative flag that indicates Redundant operation information
		D			
%FX0	_DUAL_RUN	BOOL	BIT 0	Redundant operation	Now Redundant operation CPU A, CPU B are normal
%FX1	_RING_TOPOLO GY	BOOL	BIT 1	Ring topology status	Extension base is configure as ring
%FX2	_LINE_TOPOLO GY	BOOL	BIT 2	Line topology status	Extension base is configure as line
%FX4	_SINGLE_RUN_	BOOL	BIT 4	A-SIDE single Run mode	Indicates A-SIDE single Run mode
%FX5	_SINGLE_RUN_ B	BOOL	BIT 5	B-SIDE single Run mode	Indicates B-SIDE single Run mode
%FX6	_MASTER_RUN_	BOOL	BIT 6	A-SIDE is master Run mode (Incase standby CPU exists)	Indicates A-SIDE is master Run mode
%FX7	_MASTER_RUN_ B	BOOL	BIT 7	B-SIDE is master Run mode (Incase standby CPU exists)	Indicates B-SIDE is master Run mode
%FX2016	_EXT_REDUN	BOOL	-	-	Extension redundancy system
%FX2017	_SB_EXT_REDUN	BOOL	-	-	Standby: extension redundancy system
%FW1458	_SL_OS_VER_B	ARRAY[031] OF WORD	-	-	Extension drive module OS version (B-side)
%FX4080	_SB_RING_TOPOL OGY	BOOL	-	-	Standby: ring topology state
%FX4081	_SB_LINE_TOPOL OGY	BOOL	-	-	Standby: line topology state

1. Redundant operation mode information

Γ

Appendix1.8 Operation Result Information Flag

Address	Flag name	Туре	Writable	Contents	Description
%FX672	_ARY_IDX_ERR	BOOL	Writable	Index range excess error in case of using array	In case of using array, index is out of setting value's range
%FX704	_ARY_IDX_LER	BOOL	Writable	Index range excess error latch in case of using array	Error occurred when index is out of setting value's range, in case of using array, is kept and the user erases this by program
%FX6160	_ERR	BOOL	Writable	Operation error flag	As an operation error flag by unit of operation function (FN) or function block (FB), it is renewed every operation
%FX6165	_LER	BOOL	Writable	Operation error latch flag	Operation error latch flag by program block (PB) unit. Error is kept until relevant program ends and the user erases this by program

٦

1. Operation Result Information Flag

Appendix 1.9 Operation mode Key Status Flag

1. Operation mode key status flag

Γ

Address	Flag name	Туре	Writable	Contents	Description
				Remote key status	CPU key position status information- (remote: off, not
%FX291	_REMOTE_KEY	BOOL	-	information	remote: On)
%FX294	_STOP_KEY	BOOL	-	Stop key status information	CPU key position status information- (Stop: off, not stop: On)
%FX295	_RUN_KEY	BOOL	-	Run key status information	CPU key position status information- (Run: off, not Run: On)

Appendix 1.10 Link Flag (L) List

It describes data link (L) flag

[Table 1.10.1] Communication Flag List according to High speed link no. (High speed link no. 1 ~ 12)

Item	Keyword	Туре	Content	Description
	_HSn_RLINK	Bit	High speed link parameter "n" normal operation of all station	 Indicates normal operation of all station according to parameter set in High speed link, and On under the condition as below. 1. In case that all station set in parameter is RUN mode and no error, 2. All data block set in parameter is communicated normally, and 3. The parameter set in each station itself is communicated normally. Once RUN_LINK is On, it keeps On unless stopped by LINK_DISABLE.
	_HSn_LTRBL	Bit	Abnormal state after _HSn_RLINK ON	In the state of _HSmRLINK flag On, if communication state of the station set in the parameter and data block is as follows, this flag shall be On. 1. In case that the station set in the parameter is not RUN mode, or 2. There is an error in the station set in the parameter, or 3. The communication state of data block set in the parameter is not good. LINK TROUBLE shall be On if the above 1, 2 & 3 conditions occur, and if the condition return to the normal state, it shall be Off again.
HS link	_HSn_STATE[k] (k=000~127)	Bit Array	High speed link parameter "n", k block general state	Indicates the general state of communication information for each data block of setting parameter. HS1STATEk=HS1MODk&_HS1TR X k&(~_HSnERRk)
	_HSn_MOD[k] (k=000~127)	Bit Array	High speed link parameter "n", k block station RUN operation mode	Indicates operation mode of station set in k data block of parameter.
	_HSn_TRX[k] (k=000~127)	Bit Array	Normal communication with High speed link parameter "n", k block station	Indicates if communication state of k data of parameter is communicated smoothly according to the setting.
	_HSn_ERR[k] (k=000~127)	Bit Array	High speed link parameter "n", k block station operation error mode	Indicates if the error occurs in the communication state of k data block of parameter.
	_HSn_SETBLOCK[k]	bit Array	High speed link parameter "n", k block setting	Indicates whether or not to set k data block of parameter.

Notes		
High Speed Link no.	L area address	Remarks
1	L000000~L00049F	Comparing with High speed link 1 from [Table 1], the flag address of different
2	L000500~L00099F	high speed link station no. is as follows by a simple calculation formula.
3	L001000~L00149F	* Calculation formula : L area address =
4	L001500~L00199F	L000000 + 500 x (High speed link no. – 1)
5	L002000~L00249F	
6	L002500~L00299F	In case of using high speed line flag for Program and monitoring, you can use
7	L003000~L00349F	the flag map registered in XG5000 conveniently.
8	L003500~L00399F	
9	L004000~L00449F	
10	L004500~L00499F	
11	L005000~L00549F	

k means block no. and appears 8 words by 16 per 1 word for 128 blocks from 000~127. For example, mode information (_HS1MOD) appears from block 0 to block 15 for L00010, and block 16~31, 32~47, 48~63, 64~79, 80~95, 96~111, 112~127 information for L00011, L00012, L00013, L00014, L00015, L00016, L00017. Thus, mode information of block no. 55 appears in L000137.

[Table 2] Communication Flag List according to P2P Service Setting

Γ

P2P parameter no.(n) : 1~8, P2P block(xx) :

0~63				
No.	Keyword	Туре	Contents	Description
		Bit	P2P parameter n, xx	
	_P2Pn_NDRxx		Block service normal	Indicates P2P parameter n, xx Block service normal end
			end	
		Bit	P2P parameter n, xx	Indicates P2P parameter n, xx Block service abnormal end
	_P2Pn_ERRxx		Block service abnormal	
			end	
	_P2Pn_STATUSxx	Word	P2P parameter n, xx	Indicates error code in case of P2P parameter n, xx Bloo service abnormal end
P2P			Block service abnormal	
			end error Code	
		Double word	P2P parameter n, xx	Indicates P2P parameter n, xx Block service normal count
	_P2Pn_SVCCNTxx		Block service normal	
			count	
		Double word	P2P parameter n, xx	
	_P2Pn_ERRCNTxx		Block service abnormal	Indicates P2P parameter n, xx Block service abnormal count
			count	

Appendix 1.11 Reserved Word

The reserved words are predefined words to use in the system. Therefore, it is impossible to use them as the identifier.

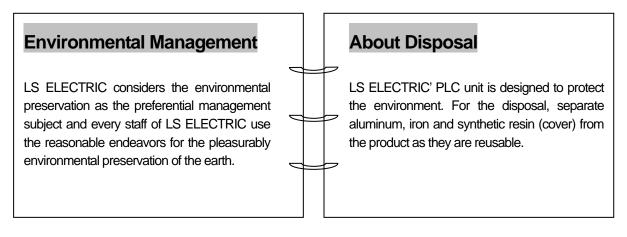
e	to use them as the identifier. Reserved Words
ľ	ACTION END_ACTION
L	ARRAY OF
Ī	AT
Ī	CASE OF ELSE END_CASE
	CONFIGURATION END_CONFIGURATION
_	Name of Data Type
	DATE#, D#
	DATE_AND_TIME#, DT#
	EXIT
	FOR TO BY DO END_FOR
	FUNCTION END_FUNCTION
_	FUNCTION_BLOCK END_FUNCTION_BLOCK
	Names of Function Block
	IF THEN ELSIF ELSE END_IF
	OK
	Operator (IL Language)
- H	Operator (ST Language)
	PROGRAM
	PROGRAM END_PROGRAM
L .	REPEAT UNTIL END_REPEAT
L .	RESOURCE END_RESOURCE
	RETAIN
	RETURN
Ī	STEP END_STEP
Ī	STRUCTURE END_STRUCTURE
Ī	T#
ſ	TASK WITH
ſ	TIME_OF_DAY#, TOD#
Ī	TRANSITION FROM TO END_TRANSITION
	TYPE END_TYPE
	VAR END_VAR
	VAR_INPUT END_VAR
	VAR_IN_OUT END_VAR VAR_EXTERNAL END_VAR
	VAR_EXTERNAL END_VAR
	VAR_GLOBAL END_VAR
	WHILE DO END. WHILE

Г

Warranty

1. Warranty Period

The product you purchased will be guaranteed for 18 months from the date of manufacturing.


2. Scope of Warranty

Any trouble or defect occurring for the above-mentioned period will be partially replaced or repaired. However, please note the following cases will be excluded from the scope of warranty.

- (1) Any trouble attributable to unreasonable condition, environment or handling otherwise specified in the manual,
- (2) Any trouble attributable to others' products,
- (3) If the product is modified or repaired in any other place not designated by the company,
- (4) Due to unintended purposes
- (5) Owing to the reasons unexpected at the level of the contemporary science and technology when delivered.
- (6) Not attributable to the company; for instance, natural disasters or fire
- 3. Since the above warranty is limited to PLC unit only, make sure to use the product considering the safety for system configuration or applications.

Environmental Policy

LS ELECTRIC Co., Ltd supports and observes the environmental policy as below.

Γ

www.lselectric.co.kr

LS ELECTRIC Co., Ltd.

Headquarter

LS-ro 127(Hogye-dong) Dongan-gu, Anyang-si, Gyeonggi-Do, 14119, Korea

Seoul Office

LS Yongsan Tower, 92, Hangang-daero, Yongsan-gu, Seoul, 04386, Korea

Tel: 82-2-2034-4033, 4888, 4703 Fax: 82-2-2034-4588 E-mail: automation@lselectric.co.kr

Factory

56, Samseong 4-gil, Mokcheon-eup, Dongnam-gu, Cheonan-si, Chungcheongnam-do, 31226, Korea

Overseas Subsidiaries

- LS ELECTRIC Japan Co., Ltd. (Tokyo, Japan) Tel: 81-3-6268-8241 E-Mail: jschuna@lselectric.biz
- LS ELECTRIC (Dalian) Co., Ltd. (Dalian, China)
 Tel: 86-411-8730-6495 E-Mail: jiheo@lselectric.com.cn
- LS ELECTRIC (Wuxi) Co., Ltd. (Wuxi, China)
 Tel: 86-510-6851-6666 E-Mail: sblee@lselectric.co.kr
- LS ELECTRIC Shanghai Office (China) Tel: 86-21-5237-9977 E-Mail: tsjun@lselectric.com.cn
- LS ELECTRIC Vietnam Co., Ltd.
 Tel: 84-93-631-4099 E-Mail: jhchoi4@lselectric.biz (Hanoi)
 Tel: 84-28-3823-7890 E-Mail: sjbaik@lselectric.biz (Hochiminh)
- LS ELECTRIC Middle East FZE (Dubai, U.A.E.) Tel: 971-4-886-5360 E-Mail: salesme@lselectric.biz
- LS ELECTRIC Europe B.V. (Hoofddorf, Netherlands)
 Tel: 31-20-654-1424 E-Mail: europartner@lselectric.biz
- LS ELECTRIC America Inc. (Chicago, USA) Tel: 1-800-891-2941 E-Mail: sales.us@lselectricamerica.com

LSELECTRIC Ustomer Center - Quick Responsive Service, Excellent technical suppor TEL, 82-1644-5481 | www.lselectric.co.kr

Specifications in this instruction manual are subject to change without notice due to continuous products development and improvement.