User Defined Communication Protocol

User Defined Communication Protocol

This is manual for user defined communication protocol which supports XP-Builder V1.22 or above, so please
install XP-Builder V1.22 before operation. This manual describes only part of MODBUS RTU Master
Communication; refer to XP-Builder manual for detailed script functions. For User defined communication, refer to
XGT panel communication manual. For understanding MODBUS protocol, refer MODBUS protocol or XGT panel

communication user’s manual.

1. Communication Setting

(1) Run XP-Builder, [Project property] = [XGT-PANEL Setting], Click ‘LS Industrial Systems’ - ‘LSIS:User

Defined Protocol’.

Project Property
Storage Settings | Global Script Settings | Auxiliary Settings | Extended Controller Settings |
Summary XGT Panel Settings | Screen Seftings | Security Settings | Key Window Settings | Language |
XGT Panel [XP30-TTA ~| I 256 Color mode
[~ Use 1:N Conpection] |
0: LSIS:User Defined Protocal]
Controller Settings
Maker: [LS Industrial Systems ~| v1.00
Product:]LSIS:User Defined Protocol L] Refer to manual
Connection Property
Protocol: |RS232C
Timeout: ID_,:j' + 100ms Wait to send: [I_j_—j~| ms Retry count: 3_——1_:,
Simulator Settings
& : + Use Emulator (+ Mirtual memory
-
I :] o
o | fa |

(2) Here, only serial communication is presented. Set connection protocol as ‘RS-232C" and dlick detail settings.
Set Baud Rate, Date Bits, Parity and Stop bits on ‘Serial Settings’. However, state number cannot be
configured because most of protocols include state number so that only physical connection part can be

-

configured.
Serial Settings
Baud Rate: 115200 ~|
Data Bits: E |
Elows contral: | J
Parity: INOME -l
Stop bit(s): 11 -l

Cancel

2. Writing script for reading word
(1) Generate script
[Script] = [Insert] on project tree.

User Defined Communication Protocol

Project - X !
1-BER Ex_MODBLUS_RTU-
%3 Project Property
Eg Cormrunication Setting
B2 Special Davice Setting
-2 Screen
-7 Base Screen
1 Read&¥Write Wo
- Window
EEE31 DEC Keypad
EE532 HEX Keypad
ERE33 ASCI Keypad
65634 FLOAT Keyps

@ Part
Text Tahle

Scrlpt -;

I] Rl Insert o

Insert Script

1 =W Import i
e B Histo .—é; __D_ _____ I
=a Reci EJ Export

EE By 2

53 File Hecipe

(2) Rename Script

v

B-1 * ReadHoldingRegister * Script_D019
114 Copyraght (o) 2004~2005
2 40 Al rights reserved,
34 Visitus
Bl
5
£
T
g
g ERROR:

108 {
11 T
12 L}
13

Select the script and press [F2] or click right button of the mouse to change the script name.

= Part
I8 Text Table
-5 Script
%] ReadHoldingRegister
&) WritehultipleRegister

e
Close

Lopy

=% Tag g.; Cut
o

&y Systern Al; Sieler
3 Flow Alarmy ~

#4 Logging

=] Scheduler
B ™ Renarne

i Export

- E’E script
IZ] ReadHoldingRegister
E "."'."nteMuItmIeFiegmter;

)

Rename Script

User Defined Communication Protocol

3. Making script for writing word
(1) Check other script operations

.
E El f******-!.-********-!.-******************************

ODEUS BTU haster Example

Writing Waord
- Function code: 0x10
1i - Station number: 1

|

1

12 - Mumber of writing ¢ 10

13

14 L **-}:-1-*-k-k-k****-k*********-1-*-k-.l-**********************"1

15

16 AAwWait if other script is running

1% A7Set =Running’ Tag as 1 when other 2cript i2 running

1% // Required same =cript in the other script (Using as Flag)

19 & ifl@ [x:=Running] == true)

20 | ~/When other script is running, check the script is completed or nat every 20ms.
21

oz for(int i=0: i<200: i++)

2z o

24 Sleep(20):

s if(@[»:=Running] == falze)

26 HExit Loop when other script iz done

or break:

25 1

st AWhen other script is running after 4 seconds, ignore other script and start commu
30) A4 zecondsz setting iz just random, no means to be 'EMND
31k

32

3% //Scriptis running from now on

34 @[X:=Running] = true: //Set Operation Flag

35

36 @[S HWO02000]++ /Mo meaning, just count the =cript operation,

® Green letters are not related with operation, but described for understanding. There are two ways to make
explanation as below. First, write comments between * /* ‘and * */ ' and then all texts are ignored as
comments. Second, the line starting with* // " is considered as a comment same as C language.

® If registering Bit/Word device on tag, it's very convenient to use.

No Group | NHame | Device Type
1 Default Address WORD
2 Default M umnber WORD
3 Default Error BIT
4 Default Walue WIORD
5 Default Runring BIT
G Drefault Writing Success BIT
® 19~31 lines describe the way to set flags which display the bit device status. When the bit tag of ‘=running’ is

set to '1'(On) communication gets disable because other scripts are running. In other words, if *=Running’ tag
is 1 if statement checks the status in every 20ms.

® If'=running’ tag is still ‘1’ in 4 seconds, exit for statement and start communication.

® Set '‘=Running’ tag as ‘1'(On) as operates communication(script occupation) like line 34. If insert same code
while making other script, that operates followed by currently running script. (Prevention of collision occurred
during scripts operation)

® Line 36 has no meaning (for checking and saving the number of script operation)

User Defined Communication Protocol

(2

Variable declaration and initialization

38 char Command([32], Response[32], T« _Data[20]: //Command sequence iz Tx buffer, Response sequence is Rx buffer,
3G int Data[20]:
40 short Address=0x0000, Checksum=0: //Clear Address, Checksum Variable (nitialization)

41

¢ int SentSize=0, ReadSize=0, nPos=0; //

42

43 //initialize command[0] ~ command[31] to 0

44 @[X:=Error] = IMemset (&Command[0], 0, 32): //32 T Buffer intialized to 0, Return to 'False’ when out of buffer range
45 // initialize response[0] ~ response(31] 10 0

46 @[x:=Error] = IMemset (8Responsel0], 0, 32) //32 RX Buffer intialized to 0, Return to 'False’ when out of buffer range
47

48 & forint =i 10i++)4

ag

3l GetData(@ [W:HW100], i, &Datalil»

b

b2 TX_Datali#2] = HBYTE(Datalil);
53 TX_Datali#2 + 1] = LOBYTE(Datalil »

B4
55 L1

(3)

57
b8
59
60
Bl
62
63
64
65

5

Line 38~41 initialize variables to use. Those variables are only valid in the current script as local variables.
Arrays in line 38~39 are newly added since V1.22 and lower version do not support them.

‘char’is 1byte. ‘short’ is 2byte(1word). int’ is 4byte(1 double word).

There will be waming after declaring unnecessary variables and not using it.

Line 44 initialized 32 variables of Command[0] ~ Command[31] as 0 using with Memset function. Retum ‘1’
(true) when a function is normally proceed or retum ‘0’(false) in case of errors or overflows. 'I" is an operator
to reverse, set '=error' tag as '1' when retum to 'false'

Line 46 is the same operation.

Line 48~55 is the operation that stores HW100~HW109 data into Data[0]~Data[9] and again stores
Data[0]~Data[9] into the TX_Data buffer as a byte

Communication (Protocol) Data

Command[nPos++] = 0x01: /f Station number
Command[nPos++] = 0x10; A Function code: write multiple register

Cammand[nPas++] =HBYTE (Address) // High byte among Word address
Command[nPos++] = LOBYTE { Address 3 // Low byte among Word address

Command[nPos++] = O /Mo, of register high
Command[nPos++] = 10 /Mo, of register low

Command[nPos++] = 20 ANUmber of Bytes
for(i=0i {20i++){
Command[nPos++] = Tx _Datalil: fMWWriting byte data
I
@[X:=02] = ICRC16 (&Command[0], 27, &Cheacksum J: // CRC Calculation, Calculating Cormmand[0] ~ [5] Checksum

Command[nPos++] = LOBYTE { Checksum) // Low Checksum byte
Command[nPos++] =HBYTE { Checksum) // High Checksum byte

Enter the protocol data on communication data buffer. ([] : 1 byte)
[Station number][Function code][High Address][Low Address][No. of register high][No. of register low]
[No. of bytes][Data#1]...[Data#N][Low Checksum][High Checksum]

User Defined Communication Protocol

® Line 57~62 enter protocol data into command buffer.

® Line 74 calculates checksum(CRC16) of [state number]~[data#N]. It is convenient to use CRC16 function.
Retumn value is a bit and is *1’(true) in case of normal operation.

® Line75~76 separate the checksum as bytes and store to the buffer.

(4) Sending Communication (Protocol)

T& SentSize = WriteTolO (0, &Command([0], nPos)/ Transmit Tx data on Channel #0, Return Value is as same as number of tranamitted data byte

® The WirteTolO in line 78 is a command to send data. The retum value is the number of data bytes sent. (int

type)
® The first argument is the channel to send. (Very important)

Project Property
Storage Seftings | Global Script Settings | Ausziliary Settings | Euxtended Controller Seftings |
Surnmary AGT Panel Settings] Screen Settings | Security Settinas | Kew Window Settings | Language |
XGT Banel [RES0=TTE iv| [256 Color mode

[Use 1'M Conpection

] 0: LSIS:User Defined Protocal] |

______ |
Settings

|LS Industrial Systerns
|LSIS:User Defined Pratacol

»1.00

[
[

Beter to ranual

|RS232C =] Detail Settings |

0= = 100ms Wait to send: 04::| ms Retry count: 34::|

Simulator Settings

XH% 0 = Use Emulatar t Mirtual memaory

e

I -

(5) Receiving Response

80 = if(SentSize) //Run when the number of transmitted data is not 0 - Transmission Success

81 | 1

i Sleept 50) A Waiting response, 50ms iz random =etting value

83 ReadSize = ReadFromlO (0, &Responsel0], 8% // Save Ry data(Zohytes), Return Value is a3 same as number of recevied data byte
o4
8o 0 ifl ReadSize == 8) //Run when received the data on success
86
87
8 @[x:=Writing Success] = frues
84
Qr b
ar
92 B else if(ReadSize == b){ /I error code occurred
93
o4 @[SHW130] =Response[1]: //Save error code
9% @[X:=Writing Succesz] = false;

%
o r 1
9 -}
%
100 @[X:=Running] = false; //Exit script operation

User Defined Communication Protocol

® Line 78 shows the number of data sent is saved in the SentSize variable.

® Line 80 shows a waiting for response from another communication device concluding previous communication
was successful in case of not-zero data sent.

® After waiting for 50msec in line 82 start to read buffer in line 83. After reading eight data in channel O, save
them to response buffer. The ReadFromIO function retums the number bytes read.

® In line 85, '=SuccessToWrite’ tag is set to ‘1’ in case that the number of data loaded is eight. That means a
success to write data. The MODBUS protocol retums 8 bytes in that case.

® Line 92 shows 5 bytes returned in case of error occurred.

® Line94 saves error code in word device which does not display error code on top of the device different from
other communication functions. It is necessary to indicate error code to indentify error states.

® Linel00 shows an operation which set ‘=running’ tag to ‘0’ in case of completion of operation.

(6) Error handling

102 ERROR:

10381

104 @ [SHW00129] = GetlastError ¢ 3 A/Save error number which occurred during script on Hw 123
05 L}

106

® Error statement is required for handling unexpected errors like line 102 ~ 105.
® Line 104 shows a way to save retum value from GetlLastError function to the device. The GetlLastError
function returns error code.

4. Script Start

(1) Scripts can start in various ways. However, if you want to operate communication in global way you should
connect to global script. You can use screen script in case of operation in a specific screen.

Project Property
Summary | XGT Panel Settings | Screen Settings | Security Setfings | Key Window Settings | Language |
Storage Settings Global Script Seftings] Auxiliary Settings | Extended Controller Settings |
T I
Seftings

<~ Marne | Device | Edge Cor Up

|

|

|| Dame: |WriteMultipleFiegister \I\1 WriteMultipleR,,, HS0000,4 Rising Ec
I —

I

|

DE'\"iCE: |D HS0000, & @ DldingH... HE 0000, 4 Falllng E: QDWH

Type: v Rising edde ¢ Falling edge

Delete Modify |

Connect to Global|Script
I Copyright {c) 2004~2006 ~
7 &ll rights reserved,

¥ Wisit us: hitp:/fwwew 1sis, biz

MODBUS RTU Mastar Example
£ > < >

(2) Please note that the number of global and screen scripts to register is restricted.

User Defined Communication Protocol

5. Some notes for making word reading operation.
(1) Word reading operation is similar to the word writing operation, but the part to process response is different.

62

6% Command[nPos+] =0 /Mo, of register high
64 Command[nPos+] =10; /Mo, of register low
s}

66 Command[nPos++] =20 SNumber of Bytes
67

68 0 for(i=0i< 200++){

60

0 Command [nPos++] = TX_Datalil: £Ariting byte data
ik

720}

&

74 @[X=Error] =1CRC16 € BCommand[0], 27, &Checksum) // CRC Calculation, Calculating Command[0] ~ [5] Checksum
75 Command[nPos++] =LOBYTE (Checksum) 7/ Low Checksum byte

76 Command[nPos+] =HEBYTE { Checksum % // High Checksum hyte

i

78 SentSize = WriteTol© ¢ 0, &Command[0], nPos): // Transmit Tx data on Channel #0, Return Value is as same as number of fransmitted data byte
74

80 = iftSentSize) //Run when the number of fransmitted data is not 0 - Transmission Success

81 | 1

82 T Sleep(50): A Waiting response, b0ms i random setting value

® In line 71 MAKEWORD function is used to save word because received buffer(Response) is based on bytes.
The MAKEWRORD function retums the value from two bytes.
® In line 72 MAKEWORD function saves a word value in HW100 device.

6. Screen data configuration

TPIRTIT 12345 12345 12345 12345 12345
12345 12345 12345 12345

(Numeric Input)

Communication Error Code Writing Success

Script Error Value
(GetlLastError())

Script Error Script

LS Industrial Systems | 7

User Defined Communication Protocol

7. Tips for using script!!!

(1) Using Script Toolbox
| i sy ﬁ !.: .—,E S) Wiew | Common Tool Communic:
b 1,] ToolBars (3
Script Toolbar | |
F I B P | StatusBar |
- Project E
' ToolBox i
STDt Toolbo: T QX _ IE Data viewer
= Function List € Contral Word { [Praperty Viewer (K)
| Dthers | & output Bar
(null) : Graphic Librar
Lommunication Uperation i ™ PL i
Data Transfarmation %8 Object Library _ _ _ _ _ _ _ -
Oevice Operation I ; I
Eﬂﬁmnry Operation < ”@| Script ToolEox |y
thers e g g g -
Print Operation “DEvide Map
screen Operation
script Operation
Systern Operation
Script Toolbo r 0 Xx

Help

Property Walue

HEFunction List € Cantrol Wiord

|Communication Operation +| «—— Function

ADD_S1M
ADD_SUM_13
ADD_SUM_25
CRCTE
HeadF ol
Write Tall
HOR_SUM

Help Insert

<+—— Add function when dlick Insert

Froperty Yalue

Contraller Mo, 1
Destination B...

Read sizes

<«—— Input Function (argument)
1

Reads data from a COM port or

the ethernet, These data s stored | €&———
to destination buffer,

Explanation of function and

Return Value

